Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery

张量(固有定义) 解算器 克罗内克三角洲 多线性映射 矩阵范数 计算机科学 结构张量 稳健主成分分析 数学 算法 基质(化学分析) 秩(图论) 人工智能 主成分分析 数学优化 图像(数学) 纯数学 特征向量 复合材料 组合数学 材料科学 物理 量子力学
作者
Qi Xie,Qian Zhao,Deyu Meng,Zongben Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 1888-1902 被引量:243
标识
DOI:10.1109/tpami.2017.2734888
摘要

As a promising way for analyzing data, sparse modeling has achieved great success throughout science and engineering. It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ( norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助李君然采纳,获得10
1秒前
Liu完成签到,获得积分10
3秒前
6秒前
xiaoshuwang完成签到,获得积分10
7秒前
Nero完成签到,获得积分10
8秒前
8秒前
12341发布了新的文献求助10
8秒前
豪杰完成签到,获得积分10
10秒前
123发布了新的文献求助10
11秒前
李健的小迷弟应助dzvd采纳,获得10
13秒前
14秒前
15秒前
15秒前
123完成签到,获得积分10
17秒前
19秒前
20秒前
清脆难胜应助靓丽的怜雪采纳,获得10
21秒前
yy完成签到,获得积分10
21秒前
22秒前
22秒前
26秒前
26秒前
18135175733发布了新的文献求助10
27秒前
泡面小猪完成签到,获得积分10
29秒前
29秒前
32秒前
33秒前
Heidi发布了新的文献求助10
34秒前
35秒前
NexusExplorer应助raffia采纳,获得10
36秒前
骆驼祥子发布了新的文献求助30
36秒前
Fa完成签到,获得积分10
36秒前
落后的立轩完成签到,获得积分10
38秒前
39秒前
首席医官完成签到,获得积分10
40秒前
天天快乐应助12341采纳,获得10
40秒前
野性的小懒虫完成签到 ,获得积分10
43秒前
43秒前
不配.应助angan采纳,获得10
44秒前
wjm完成签到,获得积分10
45秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136234
求助须知:如何正确求助?哪些是违规求助? 2787225
关于积分的说明 7780556
捐赠科研通 2443265
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870