Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery

张量(固有定义) 解算器 克罗内克三角洲 多线性映射 矩阵范数 计算机科学 结构张量 稳健主成分分析 数学 算法 基质(化学分析) 秩(图论) 人工智能 主成分分析 数学优化 图像(数学) 纯数学 特征向量 物理 复合材料 材料科学 组合数学 量子力学
作者
Qi Xie,Qian Zhao,Deyu Meng,Zongben Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:40 (8): 1888-1902 被引量:243
标识
DOI:10.1109/tpami.2017.2734888
摘要

As a promising way for analyzing data, sparse modeling has achieved great success throughout science and engineering. It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ( norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
www发布了新的文献求助10
2秒前
3秒前
小丹完成签到 ,获得积分10
4秒前
huichuanyin完成签到 ,获得积分10
5秒前
like发布了新的文献求助10
5秒前
yaolei完成签到,获得积分10
5秒前
桐桐应助热心小松鼠采纳,获得10
6秒前
华仔应助热心小松鼠采纳,获得10
6秒前
Akim应助热心小松鼠采纳,获得10
6秒前
小二郎应助热心小松鼠采纳,获得10
6秒前
orixero应助热心小松鼠采纳,获得10
6秒前
6秒前
搜集达人应助热心小松鼠采纳,获得10
6秒前
6秒前
dd发布了新的文献求助10
6秒前
英姑应助热心小松鼠采纳,获得10
6秒前
NexusExplorer应助热心小松鼠采纳,获得10
6秒前
傻妞发布了新的文献求助10
8秒前
汉堡包应助sunshine采纳,获得10
8秒前
9秒前
ograss完成签到,获得积分10
10秒前
希望天下0贩的0应助倒影采纳,获得10
11秒前
大模型应助josy采纳,获得10
11秒前
12秒前
13秒前
leeshho完成签到,获得积分10
14秒前
15秒前
15秒前
灵巧代柔完成签到,获得积分10
16秒前
欢呼妙彤完成签到,获得积分10
16秒前
土豆完成签到 ,获得积分10
17秒前
魔音甜菜完成签到,获得积分10
17秒前
尊敬冰巧完成签到 ,获得积分10
17秒前
17秒前
18秒前
Jasper应助明天见采纳,获得10
18秒前
19秒前
俊逸沛菡发布了新的文献求助10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429