Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery

张量(固有定义) 解算器 克罗内克三角洲 多线性映射 矩阵范数 计算机科学 结构张量 稳健主成分分析 数学 算法 基质(化学分析) 秩(图论) 人工智能 主成分分析 数学优化 图像(数学) 纯数学 特征向量 物理 复合材料 材料科学 组合数学 量子力学
作者
Qi Xie,Qian Zhao,Deyu Meng,Zongben Xu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:40 (8): 1888-1902 被引量:243
标识
DOI:10.1109/tpami.2017.2734888
摘要

As a promising way for analyzing data, sparse modeling has achieved great success throughout science and engineering. It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ( norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
tony完成签到,获得积分10
1秒前
Uynaux发布了新的文献求助30
1秒前
SONG完成签到,获得积分10
1秒前
SYLH应助干秋白采纳,获得10
2秒前
2秒前
风雨1210发布了新的文献求助10
3秒前
文艺书雪完成签到 ,获得积分10
3秒前
独行侠完成签到,获得积分10
3秒前
4秒前
我测你码发布了新的文献求助10
4秒前
又要起名字完成签到,获得积分10
4秒前
4秒前
4秒前
damian完成签到,获得积分10
5秒前
LiShin发布了新的文献求助10
5秒前
渝州人应助凤凰山采纳,获得10
6秒前
sweetbearm应助凤凰山采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
yizhiGao应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得30
6秒前
顾矜应助随机起的名采纳,获得10
6秒前
NN应助科研通管家采纳,获得10
6秒前
pinging应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
yizhiGao应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得20
7秒前
小小旋风应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
敬老院N号应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
彭于晏应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
yizhiGao应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794