Early Prediction of Chronic Kidney Disease Using Machine Learning Supported by Predictive Analytics

预测分析 机器学习 肾脏疾病 人工智能 计算机科学 分析 透析 肾移植 疾病 集合(抽象数据类型) 医学 数据挖掘 内科学 程序设计语言
作者
Ahmed J. Aljaaf,Dhiya Al‐Jumeily,Hussein M. Haglan,Mohamed Alloghani,Thar Baker,Abir Hussain,Jamila Mustafina
标识
DOI:10.1109/cec.2018.8477876
摘要

Chronic Kidney Disease is a serious lifelong condition that induced by either kidney pathology or reduced kidney functions. Early prediction and proper treatments can possibly stop, or slow the progression of this chronic disease to end-stage, where dialysis or kidney transplantation is the only way to save patient's life. In this study, we examine the ability of several machine-learning methods for early prediction of Chronic Kidney Disease. This matter has been studied widely; however, we are supporting our methodology by the use of predictive analytics, in which we examine the relationship in between data parameters as well as with the target class attribute. Predictive analytics enables us to introduce the optimal subset of parameters to feed machine learning to build a set of predictive models. This study starts with 24 parameters in addition to the class attribute, and ends up by 30 % of them as ideal sub set to predict Chronic Kidney Disease. A total of 4 machine learning based classifiers have been evaluated within a supervised learning setting, achieving highest performance outcomes of AUC 0.995, sensitivity 0.9897, and specificity 1. The experimental procedure concludes that advances in machine learning, with assist of predictive analytics, represent a promising setting by which to recognize intelligent solutions, which in turn prove the ability of predication in the kidney disease domain and beyond.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助狂野世立采纳,获得10
1秒前
Frank完成签到,获得积分10
1秒前
情怀应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得20
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
so000应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
CipherSage应助w420860432采纳,获得10
3秒前
osolemioo完成签到,获得积分10
3秒前
田様应助天天采纳,获得10
6秒前
科研通AI2S应助刻苦又晴采纳,获得10
7秒前
李爱国应助上官涵双采纳,获得10
8秒前
曾开心发布了新的文献求助10
8秒前
11秒前
渐渐发布了新的文献求助10
12秒前
13秒前
Dong完成签到 ,获得积分10
14秒前
16秒前
ganxinru完成签到,获得积分10
17秒前
曾开心完成签到,获得积分10
18秒前
在水一方应助柒月采纳,获得10
18秒前
狂野世立发布了新的文献求助10
19秒前
平淡的火龙果完成签到,获得积分10
20秒前
22秒前
Rewi_Zhang完成签到,获得积分10
22秒前
科研通AI2S应助Qiaoguliang采纳,获得10
22秒前
元宵关注了科研通微信公众号
23秒前
26秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462739
求助须知:如何正确求助?哪些是违规求助? 3056247
关于积分的说明 9051296
捐赠科研通 2745940
什么是DOI,文献DOI怎么找? 1506688
科研通“疑难数据库(出版商)”最低求助积分说明 696194
邀请新用户注册赠送积分活动 695720