Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation

视盘 人工智能 单眼 分割 计算机科学 视网膜 视杯(胚胎学) 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 眼科 医学 生物 生物化学 基因 眼睛发育 表型
作者
Sharath M Shankaranarayana,Keerthi Ram,Kaushik Mitra,Mohanasankar Sivaprakasam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1417-1426 被引量:67
标识
DOI:10.1109/jbhi.2019.2899403
摘要

Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this paper, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labeled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset. To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets- ORIGA, RIMONEr3, and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李创业发布了新的文献求助10
1秒前
炙热冰夏发布了新的文献求助10
1秒前
autobot1完成签到,获得积分10
1秒前
科研通AI5应助111采纳,获得10
1秒前
烟花应助Wang采纳,获得10
1秒前
曼尼发布了新的文献求助10
1秒前
赘婿应助桑姊采纳,获得10
3秒前
斯文败类应助Lvj采纳,获得10
3秒前
SYLH应助YHL采纳,获得10
3秒前
ranqi完成签到,获得积分10
3秒前
3秒前
4秒前
17808352679发布了新的文献求助10
4秒前
易生完成签到,获得积分10
5秒前
细腻曼冬完成签到 ,获得积分10
5秒前
5秒前
5秒前
9209完成签到 ,获得积分10
5秒前
6秒前
ranqi发布了新的文献求助10
6秒前
云落完成签到,获得积分10
6秒前
田様应助杨枝甘露樱桃采纳,获得10
6秒前
冲浪男孩226完成签到 ,获得积分10
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
现实的曼荷关注了科研通微信公众号
8秒前
8秒前
邓佳鑫Alan应助uniphoton采纳,获得10
8秒前
8秒前
英姑应助cc采纳,获得10
8秒前
MM完成签到,获得积分10
9秒前
lyn发布了新的文献求助10
9秒前
koipp发布了新的文献求助10
9秒前
Rebecca发布了新的文献求助10
10秒前
pinging应助愉快冰淇淋采纳,获得10
10秒前
不厌发布了新的文献求助100
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762