Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation

视盘 人工智能 单眼 分割 计算机科学 视网膜 视杯(胚胎学) 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 眼科 医学 生物 基因 眼睛发育 表型 生物化学
作者
Sharath M Shankaranarayana,Keerthi Ram,Kaushik Mitra,Mohanasankar Sivaprakasam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1417-1426 被引量:67
标识
DOI:10.1109/jbhi.2019.2899403
摘要

Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this paper, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labeled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset. To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets- ORIGA, RIMONEr3, and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧翠桃发布了新的文献求助10
刚刚
感动代双完成签到,获得积分10
1秒前
1秒前
浅眠发布了新的文献求助10
2秒前
思源应助权雨灵采纳,获得10
2秒前
TANG完成签到,获得积分10
3秒前
5秒前
失眠山雁发布了新的文献求助10
5秒前
小欧完成签到,获得积分10
6秒前
Vicktor2021完成签到,获得积分10
6秒前
8秒前
跳跃的白云完成签到 ,获得积分10
8秒前
mmmm完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
zzz发布了新的文献求助10
11秒前
搜集达人应助诚心凌珍采纳,获得10
11秒前
12秒前
好好学习发布了新的文献求助10
14秒前
香蕉觅云应助sophia采纳,获得10
15秒前
15秒前
研友_VZG7GZ应助复杂的幻儿采纳,获得10
15秒前
V-aliang发布了新的文献求助10
17秒前
17秒前
852应助科研通管家采纳,获得10
18秒前
Sky应助科研通管家采纳,获得10
18秒前
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
18秒前
22222发布了新的文献求助10
19秒前
20秒前
subohr发布了新的文献求助10
22秒前
香蕉觅云应助青衫淡染墨采纳,获得10
22秒前
高点点完成签到 ,获得积分10
22秒前
22秒前
23秒前
背后的丸子完成签到,获得积分10
23秒前
V-aliang完成签到,获得积分10
23秒前
爱看文献的小恐龙完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3298473
求助须知:如何正确求助?哪些是违规求助? 2933477
关于积分的说明 8463553
捐赠科研通 2606464
什么是DOI,文献DOI怎么找? 1423071
科研通“疑难数据库(出版商)”最低求助积分说明 661574
邀请新用户注册赠送积分活动 644983