Fully Convolutional Networks for Monocular Retinal Depth Estimation and Optic Disc-Cup Segmentation

视盘 人工智能 单眼 分割 计算机科学 视网膜 视杯(胚胎学) 计算机视觉 图像分割 卷积神经网络 模式识别(心理学) 眼科 医学 生物 基因 眼睛发育 表型 生物化学
作者
Sharath M Shankaranarayana,Keerthi Ram,Kaushik Mitra,Mohanasankar Sivaprakasam
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:23 (4): 1417-1426 被引量:67
标识
DOI:10.1109/jbhi.2019.2899403
摘要

Glaucoma is a serious ocular disorder for which the screening and diagnosis are carried out by the examination of the optic nerve head (ONH). The color fundus image (CFI) is the most common modality used for ocular screening. In CFI, the central region which is the optic disc and the optic cup region within the disc are examined to determine one of the important cues for glaucoma diagnosis called the optic cup-to-disc ratio (CDR). CDR calculation requires accurate segmentation of optic disc and cup. Another important cue for glaucoma progression is the variation of depth in ONH region. In this paper, we first propose a deep learning framework to estimate depth from a single fundus image. For the case of monocular retinal depth estimation, we are also plagued by the labeled data insufficiency. To overcome this problem we adopt the technique of pretraining the deep network where, instead of using a denoising autoencoder, we propose a new pretraining scheme called pseudo-depth reconstruction, which serves as a proxy task for retinal depth estimation. Empirically, we show pseudo-depth reconstruction to be a better proxy task than denoising. Our results outperform the existing techniques for depth estimation on the INSPIRE dataset. To extend the use of depth map for optic disc and cup segmentation, we propose a novel fully convolutional guided network, where, along with the color fundus image the network uses the depth map as a guide. We propose a convolutional block called multimodal feature extraction block to extract and fuse the features of the color image and the guide image. We extensively evaluate the proposed segmentation scheme on three datasets- ORIGA, RIMONEr3, and DRISHTI-GS. The performance of the method is comparable and in many cases, outperforms the most recent state of the art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的仙人掌完成签到,获得积分10
刚刚
刚刚
Pprain完成签到,获得积分10
1秒前
1秒前
1秒前
CHENGJIAO完成签到,获得积分10
2秒前
小V发布了新的文献求助10
3秒前
所所应助淡淡智宸采纳,获得10
4秒前
5秒前
Gaara0504发布了新的文献求助10
6秒前
6秒前
科目三应助rainb采纳,获得20
6秒前
6秒前
xiaohua给xiaohua的求助进行了留言
7秒前
7秒前
7秒前
JJbond发布了新的文献求助10
7秒前
邓邓完成签到,获得积分10
7秒前
8秒前
ZitongGao完成签到,获得积分10
8秒前
8秒前
小麦子儿完成签到 ,获得积分10
9秒前
10秒前
Orange应助失眠的无心采纳,获得10
10秒前
11秒前
11秒前
11秒前
羊羊完成签到,获得积分10
11秒前
沼泽发布了新的文献求助10
12秒前
番西茄发布了新的文献求助10
12秒前
13秒前
13秒前
忧郁盼夏发布了新的文献求助10
13秒前
圈圈完成签到 ,获得积分10
14秒前
15秒前
15秒前
解语花发布了新的文献求助10
15秒前
彭于晏应助xmyyy采纳,获得10
15秒前
努力奋斗发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005455
求助须知:如何正确求助?哪些是违规求助? 4249046
关于积分的说明 13239754
捐赠科研通 4048665
什么是DOI,文献DOI怎么找? 2214969
邀请新用户注册赠送积分活动 1224885
关于科研通互助平台的介绍 1145312