Advanced Bayesian Multilevel Modeling with the R Package brms

贝叶斯概率 R包 计算机科学 人工智能 程序设计语言
作者
Paul‐Christian Bürkner
出处
期刊:R Journal [The R Foundation]
卷期号:10 (1): 395-395 被引量:2519
标识
DOI:10.32614/rj-2018-017
摘要

The brms package allows R users to easily specify a wide range of Bayesian single-level and multilevel models which are fit with the probabilistic programming language Stan behind the scenes.Several response distributions are supported, of which all parameters (e.g., location, scale, and shape) can be predicted.Non-linear relationships may be specified using non-linear predictor terms or semi-parametric approaches such as splines or Gaussian processes.Multivariate models can be fit as well.To make all of these modeling options possible in a multilevel framework, brms provides an intuitive and powerful formula syntax, which extends the well known formula syntax of lme4.The purpose of the present paper is to introduce this syntax in detail and to demonstrate its usefulness with four examples, each showing relevant aspects of the syntax.Stan comes with its own programming language, allowing for great modeling flexibility (Stan Development Team, 2017c;Carpenter et al., 2017).Many researchers may still be hesitant to use Stan directly, as every model has to be written, debugged, and possibly also optimized, which may be a time-consuming and error-prone process even for researchers familiar with Bayesian inference.The brms package (Bürkner, 2017) presented in this paper aims to remove these hurdles for a wide range of regression models by allowing the user to benefit from the merits of Stan by using extended lme4-like formula syntax (Bates et al., 2015), with which many R users are familiar.The brms package offers much more than writing efficient and human-readable Stan code.It comes with many post-processing
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
啦啦啦啦完成签到,获得积分10
刚刚
刚刚
zhao完成签到,获得积分10
1秒前
1秒前
折耳根发布了新的文献求助50
1秒前
2秒前
hk发布了新的文献求助10
3秒前
董老师完成签到,获得积分20
4秒前
冉冉发布了新的文献求助20
4秒前
5秒前
6秒前
桐桐应助晚风采纳,获得10
7秒前
Zyk发布了新的文献求助10
7秒前
领导范儿应助Jun采纳,获得10
7秒前
东北三省发布了新的文献求助10
9秒前
邱小姐发布了新的文献求助10
10秒前
τ涛发布了新的文献求助10
11秒前
Dinggao发布了新的文献求助10
12秒前
12秒前
大鱼完成签到,获得积分20
12秒前
13秒前
654发布了新的文献求助20
13秒前
qiuyang关注了科研通微信公众号
13秒前
SciGPT应助Andy采纳,获得10
14秒前
科研通AI5应助高兴吐司采纳,获得10
14秒前
15秒前
15秒前
16秒前
乐乐应助ZZY采纳,获得10
17秒前
吴吴吴完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
所所应助大鱼采纳,获得10
19秒前
zc完成签到,获得积分10
19秒前
嗯嗯嗯发布了新的文献求助10
20秒前
莫道桑榆发布了新的文献求助10
20秒前
若尘发布了新的文献求助10
21秒前
温柔的曲奇完成签到 ,获得积分10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749398
求助须知:如何正确求助?哪些是违规求助? 3292576
关于积分的说明 10077250
捐赠科研通 3008034
什么是DOI,文献DOI怎么找? 1652003
邀请新用户注册赠送积分活动 786962
科研通“疑难数据库(出版商)”最低求助积分说明 751906