紧密连接
失调
并行传输
抗生素
肠道通透性
炎症体
肠道菌群
微生物学
自噬
生物
肠粘膜
克洛丹
化学
免疫学
细胞生物学
炎症
生物化学
医学
磁导率
内科学
细胞凋亡
膜
作者
Yang Feng,Yalan Huang,Yu Wang,Pei Wang,Huapei Song,Fengjun Wang
出处
期刊:PLOS ONE
[Public Library of Science]
日期:2019-06-18
卷期号:14 (6): e0218384-e0218384
被引量:114
标识
DOI:10.1371/journal.pone.0218384
摘要
Tight junction barrier is critical to intestinal homeostasis. Applying antibiotics to treat infections is common in clinical practice, which may affect intestinal microbiota. Intestinal microbiota dysbiosis is involved in the occurrence of some gastrointestinal diseases. Therefore, this study was aimed to investigate the influence of antibiotics on intestinal tight junction barrier and the possible underlying mechanisms. Healthy adult female C57BL/6 mice were treated with a broad-spectrum antibiotic cocktail for 14 days. 16S rDNA Illumina sequencing and headspace gas chromatography-mass spectrometry (HS-GC/MS) were respectively used to analyze microbial community and to detect short-chain fatty acids (SCFAs) contents. In vivo intestinal paracellular permeability to fluorescein isothiocyanate-dextran (FITC-dextran) was measured. Protein expression was determined by immunoblotting. Immunofluoresence was applied to observe the distributions of ZO-1, LC3B and ASC. Antibiotics remarkably altered intestinal microbiota composition in healthy mice, accompanying reduced SCFAs' concentrations. In addition, the intestinal tight junction barrier was disrupted by antibiotic treatment, as evidenced by increased intestinal paracellular permeability to FITC-dextran, decreased tight junction protein expressions, and disrupted ZO-1 morphology. Furthermore, NLRP3 inflammasome and autophagy were activated by antibiotic treatment. In conclusion, intestinal epithelial tight junction barrier dysfunction induced by antibiotics is associated with intestinal microbiota dysbiosis, activated NLRP3 inflammasome and autophagy in mice.
科研通智能强力驱动
Strongly Powered by AbleSci AI