Modular preprocessing pipelines can reintroduce artifacts into fMRI data

预处理器 计算机科学 人工智能 正交化 线性子空间 模式识别(心理学) 投影(关系代数) 滤波器(信号处理) 功能磁共振成像 子空间拓扑 回归 线性回归 算法 计算机视觉 数学 机器学习 统计 几何学 神经科学 生物
作者
Martin A. Lindquist,Stephan Geuter,Tor D. Wager,Brian Caffo
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (8): 2358-2376 被引量:192
标识
DOI:10.1002/hbm.24528
摘要

Abstract The preprocessing pipelines typically used in both task and resting‐state functional magnetic resonance imaging (rs‐fMRI) analysis are modular in nature: They are composed of a number of separate filtering/regression steps, including removal of head motion covariates and band‐pass filtering, performed sequentially and in a flexible order. In this article, we illustrate the shortcomings of this approach, as we show how later preprocessing steps can reintroduce artifacts previously removed from the data in prior preprocessing steps. We show that each regression step is a geometric projection of data onto a subspace, and that performing a sequence of projections can move the data into subspaces no longer orthogonal to those previously removed, reintroducing signal related to nuisance covariates. Thus, linear filtering operations are not commutative, and the order in which the preprocessing steps are performed is critical. These issues can arise in practice when any combination of standard preprocessing steps including motion regression, scrubbing, component‐based correction, physiological correction, global signal regression, and temporal filtering are performed sequentially. In this work, we focus primarily on rs‐fMRI. We illustrate the problem both theoretically and empirically through application to a test–retest rs‐fMRI data set, and suggest remedies. These include (a) combining all steps into a single linear filter, or (b) sequential orthogonalization of covariates/linear filters performed in series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
特例独行的jian完成签到,获得积分10
刚刚
1秒前
石金胜完成签到,获得积分10
2秒前
3秒前
3秒前
醉熏的天薇完成签到,获得积分10
3秒前
csy发布了新的文献求助10
4秒前
英姑应助壮观的菠萝采纳,获得10
6秒前
Akim应助tcf采纳,获得10
6秒前
8秒前
Owen应助ww采纳,获得10
8秒前
hazhuxixi发布了新的文献求助10
8秒前
9秒前
Ezio_sunhao完成签到,获得积分10
9秒前
陈希铭发布了新的文献求助10
10秒前
光的本质完成签到,获得积分20
11秒前
zero完成签到 ,获得积分10
12秒前
佳佳发布了新的文献求助10
13秒前
666应助Lee采纳,获得10
13秒前
13秒前
xusuizi发布了新的文献求助10
13秒前
15秒前
qxy完成签到 ,获得积分10
15秒前
17秒前
17秒前
zuo完成签到,获得积分10
17秒前
专注乌冬面完成签到,获得积分10
17秒前
牛牛眉目发布了新的文献求助10
18秒前
淡淡的绿柳关注了科研通微信公众号
19秒前
19秒前
20秒前
21秒前
weiwei发布了新的文献求助10
22秒前
笑哦发布了新的文献求助10
22秒前
22秒前
跳跳虎发布了新的文献求助10
24秒前
大模型应助俊逸谷云采纳,获得10
24秒前
Erhei发布了新的文献求助10
25秒前
mincey发布了新的文献求助10
25秒前
诺颜爱完成签到,获得积分10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966370
求助须知:如何正确求助?哪些是违规求助? 3511789
关于积分的说明 11159900
捐赠科研通 3246400
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388