Modular preprocessing pipelines can reintroduce artifacts into fMRI data

预处理器 计算机科学 人工智能 正交化 线性子空间 模式识别(心理学) 投影(关系代数) 滤波器(信号处理) 功能磁共振成像 子空间拓扑 回归 线性回归 算法 计算机视觉 数学 机器学习 统计 几何学 神经科学 生物
作者
Martin A. Lindquist,Stephan Geuter,Tor D. Wager,Brian Caffo
出处
期刊:Human Brain Mapping [Wiley]
卷期号:40 (8): 2358-2376 被引量:192
标识
DOI:10.1002/hbm.24528
摘要

Abstract The preprocessing pipelines typically used in both task and resting‐state functional magnetic resonance imaging (rs‐fMRI) analysis are modular in nature: They are composed of a number of separate filtering/regression steps, including removal of head motion covariates and band‐pass filtering, performed sequentially and in a flexible order. In this article, we illustrate the shortcomings of this approach, as we show how later preprocessing steps can reintroduce artifacts previously removed from the data in prior preprocessing steps. We show that each regression step is a geometric projection of data onto a subspace, and that performing a sequence of projections can move the data into subspaces no longer orthogonal to those previously removed, reintroducing signal related to nuisance covariates. Thus, linear filtering operations are not commutative, and the order in which the preprocessing steps are performed is critical. These issues can arise in practice when any combination of standard preprocessing steps including motion regression, scrubbing, component‐based correction, physiological correction, global signal regression, and temporal filtering are performed sequentially. In this work, we focus primarily on rs‐fMRI. We illustrate the problem both theoretically and empirically through application to a test–retest rs‐fMRI data set, and suggest remedies. These include (a) combining all steps into a single linear filter, or (b) sequential orthogonalization of covariates/linear filters performed in series.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助111采纳,获得10
刚刚
jy发布了新的文献求助10
刚刚
好好完成签到 ,获得积分10
1秒前
阿希塔完成签到,获得积分10
1秒前
JamesPei应助看看采纳,获得10
1秒前
3秒前
3秒前
卢健辉发布了新的文献求助10
3秒前
4秒前
cookie完成签到,获得积分10
4秒前
JMZ完成签到 ,获得积分10
6秒前
英姑应助星星采纳,获得10
6秒前
spurs17发布了新的文献求助30
7秒前
LH完成签到,获得积分10
7秒前
CodeCraft应助Island采纳,获得10
8秒前
annis完成签到,获得积分10
8秒前
小黄应助asir_xw采纳,获得10
9秒前
认真的rain完成签到,获得积分10
9秒前
糊涂的小伙完成签到,获得积分10
10秒前
芒果豆豆完成签到,获得积分10
10秒前
赎罪完成签到 ,获得积分10
11秒前
卢健辉完成签到,获得积分10
11秒前
11秒前
12秒前
负责的中道完成签到,获得积分10
13秒前
dyh6802发布了新的文献求助10
13秒前
儒雅八宝粥完成签到 ,获得积分10
13秒前
深情安青应助科研小菜鸟采纳,获得10
14秒前
姜灭绝完成签到,获得积分10
14秒前
三七二一完成签到,获得积分10
14秒前
15秒前
大方的寒烟完成签到,获得积分10
16秒前
18秒前
橘寄完成签到,获得积分10
18秒前
请叫我风吹麦浪应助mito采纳,获得10
19秒前
Smallhei完成签到,获得积分10
19秒前
20秒前
111111111完成签到,获得积分20
20秒前
21秒前
阿牛完成签到,获得积分20
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808