材料科学
钒
电解质
膜
降级(电信)
碳氢化合物
化学工程
渡线
双层
护盾
无机化学
有机化学
电极
化学
冶金
电气工程
工程类
岩石学
物理化学
人工智能
地质学
生物化学
计算机科学
作者
Liwei Yu,Lihong Yu,Lie Wang,Lei Wang,Xinping Qiu,Jingyu Xi
标识
DOI:10.1021/acsami.9b01632
摘要
The use of low-cost hydrocarbon membranes in vanadium flow batteries (VFBs) still remains a great challenge because of the strong oxidation of VO2+ catholyte and rapid capacity fading. Here, we report a bilayer design strategy using an antioxidant and dense cross-linked sulfonated polyimide (cSPI) layer as a protective layer for a sulfonated poly(ether ether ketone) (SPEEK) membrane to shield catholyte degradation and mitigate electrolyte crossover. A scalable process is developed to fabricate an integrated bilayer SPEEK/cSPI membrane without delamination by spraying a SPEEK transition layer between the two polymers. The tightly bridged cSPI layer not only protects the SPEEK membrane from degradation but also enhances its mechanical strength, puncture resistance, and proton/vanadium-ion selectivity. When assembled in a VFB, the bilayer SPEEK/cSPI membrane demonstrates excellent rate performance under current densities of 40-200 mA cm-2, high adaptability at a wide temperature range of -15 to 60 °C, very slow capacity decay rate of 0.054% per cycle at 160 mA cm-2, and a maximum power density of 480 mW cm-2. These merits make the bilayer SPEEK/cSPI membrane a promising candidate for the next-generation VFB to achieve low-cost, high-rate, and all-climate energy storage.
科研通智能强力驱动
Strongly Powered by AbleSci AI