选择性激光熔化
人工智能
特征(语言学)
过程(计算)
计算机科学
卷积神经网络
模式识别(心理学)
直线(几何图形)
人工神经网络
图像处理
生产线
特征识别
质量保证
图层(电子)
图像(数学)
计算机视觉
工程类
激光器
材料科学
机械工程
操作系统
光学
物理
哲学
语言学
复合材料
数学
运营管理
外部质量评估
几何学
作者
Alessandra Caggiano,Jianjing Zhang,Vittorio Alfieri,Fabrizia Caiazzo,Robert X. Gao,Roberto Teti
出处
期刊:CIRP Annals
[Elsevier]
日期:2019-01-01
卷期号:68 (1): 451-454
被引量:270
标识
DOI:10.1016/j.cirp.2019.03.021
摘要
A machine learning approach for on-line fault recognition via automatic image processing is developed to timely identify material defects due to process non-conformities in Selective Laser Melting (SLM) of metal powders. In-process images acquired during the layer-by-layer SLM processing are analyzed via a bi-stream Deep Convolutional Neural Network-based model, and the recognition of SLM defective condition-related pattern is achieved by automated image feature learning and feature fusion. Experimental evaluations confirmed the effectiveness of the machine learning method for on-line detection of defects due to process non-conformities, providing the basis for adaptive SLM process control and part quality assurance.
科研通智能强力驱动
Strongly Powered by AbleSci AI