Thermal Modeling in Metal Additive Manufacturing Using Graph Theory

图像扭曲 有限元法 过程(计算) 热的 计算机科学 开裂 图形 工作(物理) 机械工程 分布(数学) 数学优化 算法 材料科学 数学 工程类 理论计算机科学 结构工程 人工智能 热力学 数学分析 操作系统 物理 复合材料
作者
Mohammad Reza Yavari,Kevin D. Cole,Prahalada Rao
出处
期刊:Journal of Manufacturing Science and Engineering-transactions of The Asme [ASM International]
卷期号:141 (7) 被引量:57
标识
DOI:10.1115/1.4043648
摘要

Abstract The goal of this work is to predict the effect of part geometry and process parameters on the instantaneous spatiotemporal distribution of temperature, also called the thermal field or temperature history, in metal parts as they are being built layer-by-layer using additive manufacturing (AM) processes. In pursuit of this goal, the objective of this work is to develop and verify a graph theory-based approach for predicting the temperature distribution in metal AM parts. This objective is consequential to overcome the current poor process consistency and part quality in AM. One of the main reasons for poor part quality in metal AM processes is ascribed to the nature of temperature distribution in the part. For instance, steep thermal gradients created in the part during printing leads to defects, such as warping and thermal stress-induced cracking. Existing nonproprietary approaches to predict the temperature distribution in AM parts predominantly use mesh-based finite element analyses that are computationally tortuous—the simulation of a few layers typically requires several hours, if not days. Hence, to alleviate these challenges in metal AM processes, there is a need for efficient computational models to predict the temperature distribution, and thereby guide part design and selection of process parameters instead of expensive empirical testing. Compared with finite element analyses techniques, the proposed mesh-free graph theory-based approach facilitates prediction of the temperature distribution within a few minutes on a desktop computer. To explore these assertions, we conducted the following two studies: (1) comparing the heat diffusion trends predicted using the graph theory approach with finite element analysis, and analytical heat transfer calculations based on Green’s functions for an elementary cuboid geometry which is subjected to an impulse heat input in a certain part of its volume and (2) simulating the laser powder bed fusion metal AM of three-part geometries with (a) Goldak’s moving heat source finite element method, (b) the proposed graph theory approach, and (c) further comparing the thermal trends predicted from the last two approaches with a commercial solution. From the first study, we report that the thermal trends approximated by the graph theory approach are found to be accurate within 5% of the Green’s functions-based analytical solution (in terms of the symmetric mean absolute percentage error). Results from the second study show that the thermal trends predicted for the AM parts using graph theory approach agree with finite element analyses, and the computational time for predicting the temperature distribution was significantly reduced with graph theory. For instance, for one of the AM part geometries studied, the temperature trends were predicted in less than 18 min within 10% error using the graph theory approach compared with over 180 min with finite element analyses. Although this paper is restricted to theoretical development and verification of the graph theory approach, our forthcoming research will focus on experimental validation through in-process thermal measurements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yy完成签到,获得积分10
1秒前
1秒前
凌兰完成签到 ,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
5秒前
沐沐发布了新的文献求助10
5秒前
5秒前
充电宝应助yy采纳,获得10
6秒前
Jenny发布了新的文献求助50
7秒前
TRY发布了新的文献求助10
8秒前
10秒前
大聪明发布了新的文献求助10
10秒前
10秒前
14秒前
善学以致用应助Fiee采纳,获得10
14秒前
Owen应助稳重的从露采纳,获得30
14秒前
14秒前
Lee完成签到 ,获得积分10
14秒前
tao发布了新的文献求助10
15秒前
17秒前
啦啦啦发布了新的文献求助10
20秒前
21秒前
23秒前
Anthonywll发布了新的文献求助10
24秒前
Sylvia0528发布了新的文献求助10
24秒前
24秒前
Lee发布了新的文献求助10
24秒前
沐沐完成签到 ,获得积分20
27秒前
28秒前
三岁半发布了新的文献求助10
31秒前
kmmu0611完成签到 ,获得积分10
31秒前
英俊的铭应助Anthonywll采纳,获得10
31秒前
32秒前
clock完成签到 ,获得积分10
32秒前
33秒前
36秒前
36秒前
dy完成签到 ,获得积分10
37秒前
样子发布了新的文献求助10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775432
求助须知:如何正确求助?哪些是违规求助? 3321149
关于积分的说明 10203609
捐赠科研通 3035997
什么是DOI,文献DOI怎么找? 1665905
邀请新用户注册赠送积分活动 797181
科研通“疑难数据库(出版商)”最低求助积分说明 757766