突触发生
原肌球蛋白受体激酶B
突触素
树突棘
神经营养因子
突触后密度
神经毒性
氟化物
脑源性神经营养因子
内分泌学
化学
内科学
细胞生物学
生物
突触后电位
医学
受体
海马结构
毒性
免疫组织化学
无机化学
作者
Jingwen Chen,Qiang Niu,Tao Xia,Guoyu Zhou,Pei Li,Qian Zhao,Chunyan Xu,Lixin Dong,Shun Zhang,Aiguo Wang
出处
期刊:Toxicology
[Elsevier]
日期:2018-08-18
卷期号:410: 222-230
被引量:42
标识
DOI:10.1016/j.tox.2018.08.009
摘要
Excessive exposure to fluoride has adverse effects on neurodevelopment, but the mechanisms remain unclear. This study aimed to investigate the effects of fluoride exposure on synaptogenesis, and focused on the role of brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling in these effects. Using Sprague-Dawley rats developmentally exposed to sodium fluoride (NaF) from pregnancy until 6 months of delivery as in vivo model, we showed that fluoride impaired the cognitive abilities of offspring rats, decreased the density of dendritic spines and the expression of synapse proteins synaptophysin (SYN) and postsynaptic density protein-95 (PSD-95) in hippocampus, suggesting fluoride-induced cognitive deficit associates with synaptic impairment. Consistently, NaF treatment reduced dendritic outgrowth and expression of SYN and PSD-95 in human neuroblastoma SH-SY5Y cells. Further studies demonstrated that the BDNF-TrkB axis was disrupted in vivo and in vitro, as manifested by BDNF accumulation and TrkB reduction. Importantly, fluoride treatment increased phospho-extracellular signal-regulated kinases 1 and 2 (p-ERK1/2) expression, while inhibition of p-ERK1/2 significantly attenuated the effects of NaF, indicating a regulating role of p-ERK1/2 in BDNF-TrkB signaling disruption. Collectively, these data suggest that the developmental neurotoxicity of fluoride is associated with the impairment of synaptogenesis, which is caused by ERK1/2-mediated BDNF-TrkB signaling disruption.
科研通智能强力驱动
Strongly Powered by AbleSci AI