材料科学
阳极
法拉第效率
导电体
过电位
电介质
溶解
化学工程
阴极
纳米技术
电化学
复合材料
光电子学
电极
物理化学
电气工程
工程类
化学
作者
Jing Li,Peichao Zou,Sum Wai Chiang,Wentao Yao,Yang Wang,Peng Liu,Caiwu Liang,Feiyu Kang,Cheng Yang
标识
DOI:10.1016/j.ensm.2019.06.019
摘要
Lithium (Li) metal is one of the most promising anode materials for future high-energy-density rechargeable batteries. However, the uncontrollable growth of dendrites and the related safety issue hindered its practical application. Involving three-dimensional (3D) frameworks for hosting Li metal can provide large electrochemically active surface area and thus endow more homogeneous deposition and delay dendrite formation. But a more ideal situation for ultimately safe and high-performance Li metal based battery is to enable a gradient Li deposition/dissolution process, with the merit of effective utilization of spatial dimension to stabilize Li metal anode to achieve superior electrochemical performance. Here, we report a conductive-dielectric gradient framework which can guide a “bottom-up” Li deposition and “top-down” Li dissolution within this structure, rendering controllable and stable Li metal deposition/dissolution process. As a result, in a symmetric cell such anode can deliver stable Li metal deposition/dissolution for 780 h with a low overpotential (<20 mV) at 1 mA cm−2, and maintain superior cycle stability with a Coulombic efficiency over 95.6% even at a high current density of 8 mA cm−2. This conductive-dielectric gradient structure design paves a new avenue to stabilize Li metal anode and improve the safety level of metal anode based batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI