Predicting the Presence of Uncommon Elements in Unknown Biomolecules from Isotope Patterns

化学 同位素 生物分子 环境化学 纳米技术 计算生物学 天体生物学 核物理学 生物化学 生物 物理 材料科学
作者
Marvin Meusel,Franziska Hufsky,Fabian Panter,Daniel Krug,Rolf Müller,Sebastian Böcker
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:88 (15): 7556-7566 被引量:25
标识
DOI:10.1021/acs.analchem.6b01015
摘要

The determination of the molecular formula is one of the earliest and most important steps when investigating the chemical nature of an unknown compound. Common approaches use the isotopic pattern of a compound measured using mass spectrometry. Computational methods to determine the molecular formula from this isotopic pattern require a fixed set of elements. Considering all possible elements severely increases running times and more importantly the chance for false positive identifications as the number of candidate formulas for a given target mass rises significantly if the constituting elements are not prefiltered. This negative effect grows stronger for compounds of higher molecular mass as the effect of a single atom on the overall isotopic pattern grows smaller. On the other hand, hand-selected restrictions on this set of elements may prevent the identification of the correct molecular formula. Thus, it is a crucial step to determine the set of elements most likely comprising the compound prior to the assignment of an elemental formula to an exact mass. In this paper, we present a method to determine the presence of certain elements (sulfur, chlorine, bromine, boron, and selenium) in the compound from its (high mass accuracy) isotopic pattern. We limit ourselves to biomolecules, in the sense of products from nature or synthetic products with potential bioactivity. The classifiers developed here predict the presence of an element with a very high sensitivity and high specificity. We evaluate classifiers on three real-world data sets with 663 isotope patterns in total: 184 isotope patterns containing sulfur, 187 containing chlorine, 14 containing bromine, one containing boron, one containing selenium. In no case do we make a false negative prediction; for chlorine, bromine, boron, and selenium, we make ten false positive predictions in total. We also demonstrate the impact of our method on the identification of molecular formulas, in particular on the number of considered candidates and running time. The element prediction will be part of the next SIRIUS release, available from https://bio.informatik.uni-jena.de/software/sirius/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咯噔发布了新的文献求助10
刚刚
Whim应助笨狗读书采纳,获得30
1秒前
小二郎应助小余采纳,获得10
2秒前
滴答滴答完成签到,获得积分10
2秒前
LuoZuoZhi完成签到,获得积分10
3秒前
wdlc发布了新的文献求助100
3秒前
科研通AI5应助xwz626采纳,获得30
3秒前
4秒前
5秒前
田様应助chrysan采纳,获得10
5秒前
科研通AI5应助罗拉采纳,获得10
5秒前
super chan发布了新的文献求助10
7秒前
谦让的抽屉完成签到,获得积分20
8秒前
滴答滴答发布了新的文献求助10
9秒前
早上好发布了新的文献求助10
10秒前
Ava应助张育程采纳,获得10
10秒前
小马甲应助秤子采纳,获得10
11秒前
xqy完成签到 ,获得积分10
11秒前
连烙完成签到,获得积分20
12秒前
14秒前
15秒前
夏末关注了科研通微信公众号
15秒前
123发布了新的文献求助10
17秒前
连烙发布了新的文献求助10
18秒前
烤鸭完成签到 ,获得积分10
18秒前
荒糖发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
21秒前
yangya完成签到,获得积分10
21秒前
22秒前
趙途嘵生发布了新的文献求助10
23秒前
科研通AI5应助称心寒松采纳,获得10
23秒前
23秒前
flymouse完成签到,获得积分10
23秒前
wss发布了新的文献求助10
24秒前
25秒前
HH完成签到,获得积分10
25秒前
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427