The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen

塔菲尔方程 材料科学 单层 催化作用 纳米片 相(物质) 化学工程 电催化剂 金属 纳米技术 基质(水族馆) 电化学 电极 化学物理 化学 有机化学 物理化学 冶金 工程类 地质学 海洋学
作者
Damien Voiry,Raymond Fullon,Jieun Yang,Cecília de Carvalho Castro Silva,Rajesh Kappera,İbrahim Bozkurt,Daniel Kaplan,Maureen J. Lagos,Philip E. Batson,Gautam Gupta,Aditya D. Mohite,Liang Dong,Dequan Er,Vivek B. Shenoy,Tewodros Asefa,Manish Chhowalla
出处
期刊:Nature Materials [Springer Nature]
卷期号:15 (9): 1003-1009 被引量:782
标识
DOI:10.1038/nmat4660
摘要

The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不呐呐发布了新的文献求助30
1秒前
ding应助enen采纳,获得10
2秒前
2秒前
陈晓旭发布了新的文献求助10
2秒前
东东发布了新的文献求助10
2秒前
SciGPT应助emilybei采纳,获得10
3秒前
刚国忠发布了新的文献求助10
3秒前
叶财财完成签到,获得积分10
4秒前
Xu发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
zyfzyf完成签到,获得积分10
4秒前
科研通AI6应助川川采纳,获得10
5秒前
5秒前
科研通AI6应助火火木采纳,获得30
6秒前
will完成签到,获得积分10
6秒前
Hello应助小田睡不醒采纳,获得10
6秒前
6秒前
香蕉觅云应助荒野风采纳,获得10
6秒前
7秒前
7秒前
阳光发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
9秒前
孔踏歌完成签到,获得积分10
9秒前
9秒前
Tingting完成签到 ,获得积分10
9秒前
10秒前
希望天下0贩的0应助久违采纳,获得10
10秒前
一一发布了新的文献求助10
10秒前
小怪兽kk完成签到,获得积分20
12秒前
高玉峰发布了新的文献求助10
12秒前
蒹葭发布了新的文献求助10
12秒前
御风发布了新的文献求助10
13秒前
饼子完成签到 ,获得积分10
13秒前
好好好发布了新的文献求助10
13秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615218
求助须知:如何正确求助?哪些是违规求助? 4700091
关于积分的说明 14906605
捐赠科研通 4741474
什么是DOI,文献DOI怎么找? 2547964
邀请新用户注册赠送积分活动 1511725
关于科研通互助平台的介绍 1473781