分子筛
材料科学
乙炔
选择性
化学工程
吸附
筛子(范畴论)
分子
气体分离
多孔介质
纳米技术
多孔性
有机化学
化学
催化作用
复合材料
生物化学
膜
组合数学
数学
工程类
作者
Bin Li,Xili Cui,Daniel O’Nolan,Hui‐Min Wen,Mengdie Jiang,Rajamani Krishna,Hui Wu,Rui‐Biao Lin,Yu‐Sheng Chen,Daqiang Yuan,Huabin Xing,Wei Zhou,Qilong Ren,Guodong Qian,Michael J. Zaworotko,Banglin Chen
标识
DOI:10.1002/adma.201704210
摘要
Realization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible technological transformation from the traditional energy-intensive cryogenic distillation to the energy-efficient, adsorbent-based separation and purification in the future. Although extensive research endeavors are pursued to target ideal molecular sieves among diverse porous materials, over the past several decades, ideal molecular sieves for the separation and purification of light hydrocarbons are rarely realized. Herein, an ideal porous material, SIFSIX-14-Cu-i (also termed as UTSA-200), is reported with ultrafine tuning of pore size (3.4 Å) to effectively block ethylene (C2 H4 ) molecules but to take up a record-high amount of acetylene (C2 H2 , 58 cm3 cm-3 under 0.01 bar and 298 K). The material therefore sets up new benchmarks for both the adsorption capacity and selectivity, and thus provides a record purification capacity for the removal of trace C2 H2 from C2 H4 with 1.18 mmol g-1 C2 H2 uptake capacity from a 1/99 C2 H2 /C2 H4 mixture to produce 99.9999% pure C2 H4 (much higher than the acceptable purity of 99.996% for polymer-grade C2 H4 ), as demonstrated by experimental breakthrough curves.
科研通智能强力驱动
Strongly Powered by AbleSci AI