Unconventional superconductivity in magic-angle graphene superlattices

凝聚态物理 超导电性 超晶格 双层石墨烯 石墨烯 材料科学 铜酸盐 物理 相图 费米能量 态密度 相(物质) 量子力学 电子
作者
Yuan Cao,Valla Fatemi,Shiang Fang,Kenji Watanabe,Takashi Taniguchi,Efthimios Kaxiras,Pablo Jarillo‐Herrero
出处
期刊:Nature [Springer Nature]
卷期号:556 (7699): 43-50 被引量:6283
标识
DOI:10.1038/nature26160
摘要

The understanding of strongly-correlated materials, and in particular unconventional superconductors, has puzzled physicists for decades. Such difficulties have stimulated new research paradigms, such as ultra-cold atom lattices for simulating quantum materials. Here we report on the realization of intrinsic unconventional superconductivity in a 2D superlattice created by stacking two graphene sheets with a small twist angle. For angles near $1.1^\circ$, the first `magic' angle, twisted bilayer graphene (TBG) exhibits ultra-flat bands near charge neutrality, which lead to correlated insulating states at half-filling. Upon electrostatic doping away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature $T_c$ up to 1.7 K. The temperature-density phase diagram shows similarities with that of the cuprates, including superconducting domes. Moreover, quantum oscillations indicate small Fermi surfaces near the correlated insulating phase, in analogy with under-doped cuprates. The relative high $T_c$, given such small Fermi surface (corresponding to a record-low 2D carrier density of $10^{11} \textrm{cm}^{-2}$ , renders TBG among the strongest coupling superconductors, in a regime close to the BCS-BEC crossover. These novel results establish TBG as the first purely carbon-based 2D superconductor and as a highly tunable platform to investigate strongly-correlated phenomena, which could lead to insights into the physics of high-$T_c$ superconductors and quantum spin liquids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swy完成签到 ,获得积分10
刚刚
满家归寻完成签到 ,获得积分10
4秒前
谜记完成签到 ,获得积分10
5秒前
6秒前
actor2006完成签到,获得积分10
8秒前
OK完成签到,获得积分10
10秒前
搜集达人应助愤怒的幻翠采纳,获得10
10秒前
vayen完成签到,获得积分10
10秒前
小刘完成签到,获得积分10
11秒前
车剑锋完成签到,获得积分10
11秒前
都会完成签到 ,获得积分10
12秒前
14秒前
15秒前
WeiSONG完成签到,获得积分10
15秒前
cos完成签到 ,获得积分10
15秒前
找文献呢完成签到,获得积分10
16秒前
秋辞发布了新的文献求助10
16秒前
甜甜棒棒糖完成签到,获得积分10
17秒前
JY'完成签到,获得积分0
17秒前
najibveto应助科研通管家采纳,获得10
19秒前
云瑾应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
iota应助科研通管家采纳,获得10
19秒前
Lucas应助科研通管家采纳,获得10
19秒前
小蘑菇应助科研通管家采纳,获得10
19秒前
斯文败类应助科研通管家采纳,获得10
19秒前
完美世界应助科研通管家采纳,获得10
19秒前
熊猫应助科研通管家采纳,获得30
19秒前
云瑾应助科研通管家采纳,获得10
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
爆米花应助科研通管家采纳,获得10
20秒前
20秒前
科研君不爱科研完成签到,获得积分10
20秒前
兰兰完成签到,获得积分10
20秒前
22222发布了新的文献求助50
23秒前
小青柠发布了新的文献求助10
24秒前
lalala应助俊逸沛菡采纳,获得20
25秒前
小纯洁发布了新的文献求助10
25秒前
十三完成签到 ,获得积分10
26秒前
Ava应助周凡淇采纳,获得10
26秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997864
求助须知:如何正确求助?哪些是违规求助? 2658490
关于积分的说明 7196617
捐赠科研通 2293953
什么是DOI,文献DOI怎么找? 1216325
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888