丰度(生态学)
生态系统
抗生素耐药性
环境科学
抗性(生态学)
生态学
分水岭
生物
抗生素
微生物学
计算机科学
机器学习
作者
Zheng Ji,Zhenchao Zhou,Yuanyuan Wei,Tao Chen,Wanqiu Feng,Hong Chen
标识
DOI:10.1016/j.envint.2018.02.039
摘要
The rapid expansion of human activity in a region can exacerbate human health risks induced by antibiotic resistance genes (ARGs). Peri-urban ecosystems serve at the symbiotic interface between urban and rural ecosystems, and investigations into the dissemination of ARGs in peri-urban areas provide a basic framework for tracking the spread of ARGs and potential mitigations. In this study, through the use of high-throughput quantitative PCR and 16S rRNA gene high-throughput sequencing, seasonal and geographical distributions of ARGs and their host bacterial communities were characterized in a peri-urban river. The abundance of ARGs in downstream was 5.2-33.9 times higher than upstream, which indicated distinct antibiotic resistance pollution in the areas where human lives. With the comparison classified based on land use nearby, the abundance of ARGs in samples near farmland and villages was higher than in the background (3.47-5.58 times), pointing to the high load in the river caused by farming and other human activities in the peri-urban areas. With the co-occurrence pattern revealed by network analysis, blaVEB and tetM were proposed to be indicators of ARGs which get together in the same module. Furthermore, seasonal variations in ARGs and the transport of bacterial communities were observed. The effects of seasonal temperature on the dissemination of ARGs along the watershed was also evaluated. The highest absolute abundance of ARGs occurred in summer (2.81 × 109 copies/L on average), the trends of ARG abundances in four seasons were similar with local air temperature. The Linear discriminant analysis effect size (LEfSe) suggested that nine bacterial genera were implicated as biomarkers for the corresponding season. Mobile genetic elements (MGEs) showed significant positive correlation with ARGs (P < 0.01) and MGEs were also identified as the key-contributing factor driving ARG alteration. This study provides an overview of seasonal and geographical variations in ARGs distribution in a peri-urban river and draws attention to controlling pollutants in peri-urban ecosystems.
科研通智能强力驱动
Strongly Powered by AbleSci AI