Fast Spherical Mapping of Cortical Surface Meshes Using Deep Unsupervised Learning

多边形网格 计算机科学 曲面(拓扑) 公制(单位) 失真(音乐) 过程(计算) 人工智能 算法 计算机视觉 数学 几何学 计算机图形学(图像) 操作系统 计算机网络 经济 运营管理 放大器 带宽(计算)
作者
Fenqiang Zhao,Zhengwang Wu,Li Wang,Weili Lin,Gang Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 163-173
标识
DOI:10.1007/978-3-031-16446-0_16
摘要

Spherical mapping of cortical surface meshes provides a more convenient and accurate space for cortical surface registration and analysis and thus has been widely adopted in neuroimaging field. Conventional approaches typically first inflate and project the original cortical surface mesh onto a sphere to generate an initial spherical mesh which contains large distortions. Then they iteratively reshape the spherical mesh to minimize the metric (distance), area or angle distortions. However, these methods suffer from two major issues: 1) the iterative optimization process is computationally expensive, making them not suitable for large-scale data processing; 2) when metric distortion cannot be further minimized, either area or angle distortion is minimized at the expense of the other, which is not flexible to generate application-specific meshes based on both of them. To address these issues, for the first time, we propose a deep learning-based algorithm to learn the mapping between the original cortical surface and spherical surface meshes. Specifically, we take advantage of the Spherical U-Net model to learn the spherical diffeomorphic deformation field for minimizing the distortions between the icosahedron-reparameterized original surface and spherical surface meshes. The end-to-end unsupervised learning scheme is very flexible to incorporate various optimization objectives. We further integrate it into a coarse-to-fine multi-resolution framework for better correcting fine-scaled distortions. We have validated our method on 800+ cortical surfaces, demonstrating reduced distortions than FreeSurfer (the most popularly used tool), while speeding up the process from 20 min to 5 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
trust完成签到,获得积分10
1秒前
1秒前
Laisy完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
2秒前
晨曦完成签到,获得积分10
3秒前
sill完成签到,获得积分10
4秒前
4秒前
微风完成签到,获得积分10
4秒前
痴情的雁易完成签到,获得积分10
5秒前
Ling完成签到,获得积分10
5秒前
my完成签到,获得积分10
6秒前
7秒前
8秒前
借一颗糖发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
124完成签到,获得积分10
10秒前
星辰大海应助rjj001022采纳,获得10
10秒前
微不足道发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
ALinaLi发布了新的文献求助10
12秒前
13秒前
fsm发布了新的文献求助20
13秒前
未月初二完成签到,获得积分10
13秒前
14秒前
sue发布了新的文献求助100
15秒前
量子星尘发布了新的文献求助10
15秒前
酷炫的白翠完成签到,获得积分10
16秒前
16秒前
英姑应助GGB采纳,获得10
16秒前
16秒前
geoffreyfan发布了新的文献求助10
17秒前
斯文败类应助未月初二采纳,获得10
18秒前
18秒前
fino发布了新的文献求助10
18秒前
Mullt完成签到 ,获得积分10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662750
求助须知:如何正确求助?哪些是违规求助? 3223555
关于积分的说明 9752139
捐赠科研通 2933523
什么是DOI,文献DOI怎么找? 1606108
邀请新用户注册赠送积分活动 758266
科研通“疑难数据库(出版商)”最低求助积分说明 734771