Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:9
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水星完成签到 ,获得积分0
2秒前
2秒前
Sandy完成签到,获得积分10
3秒前
ccx完成签到,获得积分10
4秒前
Lucas应助VitoLi采纳,获得10
8秒前
zsfxqq完成签到 ,获得积分10
9秒前
LHW完成签到,获得积分0
9秒前
若俗人完成签到,获得积分10
10秒前
拼搏一曲完成签到 ,获得积分10
10秒前
mito完成签到,获得积分10
11秒前
庾楼月宛如昨完成签到 ,获得积分10
13秒前
清脆如娆完成签到 ,获得积分10
15秒前
16秒前
高高小兔子完成签到,获得积分10
16秒前
aaronzhu1995完成签到,获得积分10
16秒前
nnnnn完成签到,获得积分10
17秒前
meng完成签到,获得积分10
17秒前
为你等候完成签到,获得积分10
18秒前
19秒前
萝卜卷心菜完成签到 ,获得积分10
19秒前
21秒前
这是对吧完成签到,获得积分10
22秒前
简单花花完成签到,获得积分10
23秒前
芙瑞完成签到 ,获得积分10
23秒前
惠_____完成签到 ,获得积分10
24秒前
24秒前
文安完成签到,获得积分10
25秒前
26秒前
萌萌许完成签到,获得积分10
28秒前
dlut0407完成签到,获得积分10
28秒前
30秒前
神秘玩家完成签到 ,获得积分10
31秒前
Yuuuu完成签到 ,获得积分10
32秒前
尔尔完成签到 ,获得积分10
32秒前
xixihaha完成签到,获得积分10
33秒前
小嚣张完成签到,获得积分10
35秒前
小豆豆严完成签到,获得积分10
35秒前
Glitter完成签到 ,获得积分10
36秒前
少女徐必成完成签到 ,获得积分10
36秒前
俍璟完成签到 ,获得积分10
37秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968578
求助须知:如何正确求助?哪些是违规求助? 3513400
关于积分的说明 11167585
捐赠科研通 3248853
什么是DOI,文献DOI怎么找? 1794499
邀请新用户注册赠送积分活动 875131
科研通“疑难数据库(出版商)”最低求助积分说明 804664