Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:9
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jimmy发布了新的文献求助10
刚刚
hyr发布了新的文献求助10
刚刚
ruru发布了新的文献求助10
1秒前
1秒前
orixero应助受伤幻桃采纳,获得10
1秒前
2秒前
粗犷的灵松完成签到,获得积分10
2秒前
NexusExplorer应助白好闻采纳,获得10
2秒前
3秒前
秦q发布了新的文献求助10
3秒前
zcy发布了新的文献求助10
3秒前
4秒前
niu发布了新的文献求助50
4秒前
shan完成签到,获得积分10
4秒前
cao完成签到,获得积分10
5秒前
宫城完成签到,获得积分10
5秒前
EliGolden发布了新的文献求助10
5秒前
小马想毕业完成签到,获得积分10
5秒前
Aegis完成签到,获得积分10
6秒前
fff123发布了新的文献求助10
7秒前
8秒前
8秒前
shan发布了新的文献求助10
8秒前
9秒前
小俊完成签到,获得积分10
9秒前
星辰大海应助她很可疑啊采纳,获得10
9秒前
9秒前
牛德辉发布了新的文献求助10
10秒前
CyS发布了新的文献求助10
11秒前
Dream Luminator完成签到,获得积分10
12秒前
水水发布了新的文献求助20
12秒前
清秀的若云完成签到 ,获得积分10
12秒前
冷静凡天应助过眼云烟采纳,获得10
12秒前
研友_VZG7GZ应助过眼云烟采纳,获得10
12秒前
汪汪发布了新的文献求助10
14秒前
受伤幻桃发布了新的文献求助10
14秒前
14秒前
彭于晏应助duanzhuang采纳,获得10
14秒前
辛勤夜柳完成签到,获得积分20
14秒前
她很可疑啊完成签到,获得积分20
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975986
求助须知:如何正确求助?哪些是违规求助? 3520289
关于积分的说明 11202025
捐赠科研通 3256778
什么是DOI,文献DOI怎么找? 1798453
邀请新用户注册赠送积分活动 877605
科研通“疑难数据库(出版商)”最低求助积分说明 806482