Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:9
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助30采纳,获得10
1秒前
思源应助夜莺采纳,获得10
1秒前
1秒前
2秒前
香香完成签到,获得积分10
2秒前
19111867526发布了新的文献求助10
3秒前
3秒前
思源应助HJ采纳,获得30
3秒前
lily发布了新的文献求助10
4秒前
李小新发布了新的文献求助10
4秒前
4秒前
hyue发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
落后的灵寒完成签到,获得积分10
7秒前
云中漫步完成签到,获得积分10
7秒前
raquelle完成签到,获得积分10
7秒前
8秒前
脑洞疼应助李小新采纳,获得10
8秒前
你也爱抽二手烟吗完成签到,获得积分10
9秒前
echo发布了新的文献求助10
9秒前
Murray发布了新的文献求助10
10秒前
10秒前
raquelle发布了新的文献求助10
10秒前
晓布衣完成签到,获得积分10
10秒前
香蕉觅云应助lucky采纳,获得10
10秒前
10秒前
11秒前
11秒前
花卷兔兔完成签到 ,获得积分10
12秒前
lalala发布了新的文献求助10
12秒前
19111867526完成签到,获得积分10
12秒前
白鱼发布了新的文献求助10
12秒前
霸气的不尤完成签到 ,获得积分10
14秒前
今后应助郑蒸日上采纳,获得10
14秒前
15秒前
xcr完成签到,获得积分10
15秒前
CodeCraft应助小白一号采纳,获得30
15秒前
Nature发布了新的文献求助10
16秒前
李健的小迷弟应助小郭采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585774
求助须知:如何正确求助?哪些是违规求助? 4002441
关于积分的说明 12390234
捐赠科研通 3678492
什么是DOI,文献DOI怎么找? 2027418
邀请新用户注册赠送积分活动 1060929
科研通“疑难数据库(出版商)”最低求助积分说明 947342