Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:9
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独雨梅完成签到,获得积分10
3秒前
woobinhua完成签到 ,获得积分10
3秒前
雪落你看不见完成签到,获得积分10
5秒前
十月天秤完成签到,获得积分0
6秒前
依文完成签到,获得积分20
6秒前
ymr完成签到 ,获得积分10
7秒前
哦哦哦完成签到 ,获得积分10
8秒前
jzmupyj完成签到,获得积分10
8秒前
大橙子发布了新的文献求助10
11秒前
xdlongchem完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
小梦完成签到,获得积分10
15秒前
xuhang完成签到,获得积分10
15秒前
ZSHAN完成签到,获得积分10
16秒前
美满的机器猫完成签到,获得积分10
19秒前
王小磊完成签到,获得积分10
23秒前
谢花花完成签到 ,获得积分10
24秒前
25秒前
瓦罐完成签到 ,获得积分10
25秒前
扁舟灬完成签到,获得积分10
26秒前
Cpp完成签到 ,获得积分10
28秒前
贤惠的老黑完成签到 ,获得积分10
30秒前
ame1120发布了新的文献求助10
30秒前
倦梦还完成签到,获得积分10
32秒前
Sunrise完成签到,获得积分10
33秒前
yyyy发布了新的文献求助10
42秒前
自觉柠檬完成签到 ,获得积分10
46秒前
ergatoid完成签到,获得积分10
46秒前
Hao完成签到,获得积分10
47秒前
月亮煮粥完成签到,获得积分10
47秒前
欣欣完成签到 ,获得积分10
49秒前
现代的紫霜完成签到,获得积分10
50秒前
研学弟完成签到,获得积分10
51秒前
52秒前
jzmulyl完成签到,获得积分10
53秒前
cxdhxu完成签到 ,获得积分10
53秒前
852应助大橙子采纳,获得10
55秒前
务实雁梅完成签到,获得积分10
1分钟前
酷波er应助廿伊采纳,获得30
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022