Evolutionary Multi-Objective Optimization in Searching for Various Antimicrobial Peptides [Feature]

抗菌肽 计算机科学 人工智能 抗菌剂 计算生物学 机器学习 生物 微生物学
作者
Yiping Liu,Xinyi Zhang,Yuansheng Liu,Yansen Su,Xiangxiang Zeng,Gary G. Yen
出处
期刊:IEEE Computational Intelligence Magazine [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 31-45 被引量:7
标识
DOI:10.1109/mci.2023.3245731
摘要

Antimicrobial peptides (AMPs), which are parts of the innate immune response found among all classes of life, are promising in broad-spectrum antibiotics and drug-resistant infection treatments. Although AMPs effectively kill bacteria, numerous AMPs widely distributed in the sequence space remain unknown to humans. Therefore, the de novo design of AMPs involves the exploration of vast sequence space to identify peptides with high antimicrobial activity and good diversity among the known AMPs. Computational intelligence approaches have successfully identified some AMPs; however, most of them fail to address the diversity of the obtained AMPs. This paper reports an evolutionary multi-objective approach for AMP design to optimize both the antimicrobial activity and diversity among identified AMPs. Our approach employs a deep learning model to predict a peptide's antimicrobial activity and a niche sharing method to estimate a peptide's density. Then, an evolutionary multi-objective algorithm is presented to simultaneously optimize the objectives of antimicrobial activity and diversity. The algorithm takes the advantage of a decomposition-based framework to search for AMPs with good diversity. These AMPs are collected by an elite archive during the evolution process. Moreover, a local search strategy is applied to enhance the quality of the identified AMPs. The experimental results show that the proposed approach outperforms the state-of-the-art designs in searching for various AMPs. The AMPs generated by the proposed approach have high antimicrobial activities and are distinct from each other and among the AMPs in the datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小离完成签到,获得积分10
刚刚
大个应助哲999采纳,获得10
1秒前
萌道发布了新的文献求助10
1秒前
1秒前
1秒前
yrea完成签到,获得积分10
1秒前
2秒前
JamesPei应助白华苍松采纳,获得10
3秒前
wangn发布了新的文献求助10
3秒前
挽歌发布了新的文献求助10
3秒前
3秒前
Zhang发布了新的文献求助10
3秒前
Owen应助jogrgr采纳,获得10
3秒前
wjw关闭了wjw文献求助
3秒前
4秒前
4秒前
4秒前
4秒前
Ava应助侦察兵采纳,获得10
5秒前
5秒前
rookie_b0发布了新的文献求助10
5秒前
邓代容完成签到 ,获得积分10
6秒前
可爱的函函应助南逸然采纳,获得10
6秒前
HiK完成签到,获得积分10
6秒前
gaos发布了新的文献求助10
6秒前
7秒前
外向从灵发布了新的文献求助10
7秒前
7秒前
萌道完成签到,获得积分20
8秒前
thanhmanhp完成签到,获得积分10
8秒前
doudou发布了新的文献求助10
8秒前
8秒前
有风完成签到,获得积分10
8秒前
tk完成签到 ,获得积分10
9秒前
9秒前
大模型应助蜡笔采纳,获得30
9秒前
liu发布了新的文献求助10
9秒前
完美世界应助咳咳采纳,获得10
10秒前
10秒前
哒哒完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759