Supervoxel-based targetless registration and identification of stable areas for deformed point clouds

点云 迭代最近点 计算机科学 人工智能 体素 计算机视觉 图像配准 鉴定(生物学) 特征(语言学) 点(几何) 变形(气象学) 算法 模式识别(心理学) 图像(数学) 数学 地质学 几何学 语言学 哲学 植物 海洋学 生物
作者
Yihui Yang,Volker Schwieger
出处
期刊:Journal of Applied Geodesy [De Gruyter]
被引量:1
标识
DOI:10.1515/jag-2022-0031
摘要

Abstract Accurate and robust 3D point cloud registration is the crucial part of the processing chain in terrestrial laser scanning (TLS)-based deformation monitoring that has been widely investigated in the last two decades. For the scenarios without signalized targets, however, automatic and robust point cloud registration becomes more challenging, especially when significant deformations and changes exist between the sequence of scans which may cause erroneous registrations. In this contribution, a fully automatic registration algorithm for point clouds with partially unstable areas is proposed, which does not require artificial targets or extracted feature points. In this method, coarsely registered point clouds are firstly over-segmented and represented by supervoxels based on the local consistency assumption of deformed objects. A confidence interval based on an approximate assumption of the stochastic model is considered to determine the local minimum detectable deformation for the identification of stable areas. The significantly deformed supervoxels between two scans can be detected progressively by an efficient iterative process, solely retaining the stable areas to be utilized for the fine registration. The proposed registration method is demonstrated on two datasets (both with two-epoch scans): An indoor scene simulated with different kinds of changes, including rigid body movement and shape deformation, and the Nesslrinna landslide close to Obergurgl, Austria. The experimental results show that the proposed algorithm exhibits a higher registration accuracy and thus a better detection of deformations in TLS point clouds compared with the existing voxel-based method and the variants of the iterative closest point (ICP) algorithm.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newnew完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
ding应助磐xst采纳,获得10
4秒前
原野完成签到,获得积分10
4秒前
科研通AI6应助Nancy采纳,获得10
4秒前
4秒前
huilin发布了新的文献求助10
4秒前
5秒前
niNe3YUE应助薄荷采纳,获得10
5秒前
5秒前
何木萧完成签到,获得积分10
5秒前
丫丫完成签到,获得积分10
7秒前
Ava应助缥缈傥采纳,获得10
7秒前
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
huilin完成签到,获得积分10
10秒前
wenjing发布了新的文献求助10
11秒前
aaa发布了新的文献求助10
11秒前
是个哑巴完成签到,获得积分10
11秒前
Chicophy发布了新的文献求助10
11秒前
12秒前
洪山老狗发布了新的文献求助10
12秒前
13秒前
shengch0234完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
碧蓝之柔完成签到,获得积分10
14秒前
14秒前
伞下铭发布了新的文献求助10
15秒前
tree发布了新的文献求助10
15秒前
毕业完成签到,获得积分10
15秒前
DMPK完成签到,获得积分10
15秒前
仁爱的冰夏完成签到,获得积分10
16秒前
是个哑巴发布了新的文献求助10
16秒前
上官若男应助VIOLET采纳,获得10
16秒前
Y1B发布了新的文献求助10
16秒前
1an发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002