Supervoxel-based targetless registration and identification of stable areas for deformed point clouds

点云 迭代最近点 计算机科学 人工智能 体素 计算机视觉 图像配准 鉴定(生物学) 特征(语言学) 点(几何) 变形(气象学) 算法 模式识别(心理学) 图像(数学) 数学 地质学 几何学 语言学 哲学 植物 海洋学 生物
作者
Yihui Yang,Volker Schwieger
出处
期刊:Journal of Applied Geodesy [De Gruyter]
被引量:1
标识
DOI:10.1515/jag-2022-0031
摘要

Abstract Accurate and robust 3D point cloud registration is the crucial part of the processing chain in terrestrial laser scanning (TLS)-based deformation monitoring that has been widely investigated in the last two decades. For the scenarios without signalized targets, however, automatic and robust point cloud registration becomes more challenging, especially when significant deformations and changes exist between the sequence of scans which may cause erroneous registrations. In this contribution, a fully automatic registration algorithm for point clouds with partially unstable areas is proposed, which does not require artificial targets or extracted feature points. In this method, coarsely registered point clouds are firstly over-segmented and represented by supervoxels based on the local consistency assumption of deformed objects. A confidence interval based on an approximate assumption of the stochastic model is considered to determine the local minimum detectable deformation for the identification of stable areas. The significantly deformed supervoxels between two scans can be detected progressively by an efficient iterative process, solely retaining the stable areas to be utilized for the fine registration. The proposed registration method is demonstrated on two datasets (both with two-epoch scans): An indoor scene simulated with different kinds of changes, including rigid body movement and shape deformation, and the Nesslrinna landslide close to Obergurgl, Austria. The experimental results show that the proposed algorithm exhibits a higher registration accuracy and thus a better detection of deformations in TLS point clouds compared with the existing voxel-based method and the variants of the iterative closest point (ICP) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荆扉发布了新的文献求助10
1秒前
隐形的冰海完成签到,获得积分20
1秒前
L353052833发布了新的文献求助30
1秒前
1秒前
cocolu应助糟糕的妖妖采纳,获得30
1秒前
张萌发布了新的文献求助10
2秒前
老实的鼠标完成签到,获得积分10
2秒前
Lucas应助长情凝丹采纳,获得10
2秒前
Akim应助WonderHua采纳,获得10
2秒前
huxiaowen发布了新的文献求助10
3秒前
aaa发布了新的文献求助10
3秒前
3秒前
Owen应助vv采纳,获得60
3秒前
在水一方应助zz采纳,获得10
3秒前
FashionBoy应助欣喜眼神采纳,获得10
3秒前
yolk发布了新的文献求助30
4秒前
4秒前
彭于彦祖应助大期待采纳,获得30
5秒前
5秒前
5秒前
pathetic宣宣完成签到,获得积分20
5秒前
佐伊完成签到 ,获得积分10
5秒前
6秒前
LM发布了新的文献求助10
6秒前
6秒前
实验狗发布了新的文献求助30
7秒前
方糖萌完成签到,获得积分20
7秒前
费城青年发布了新的文献求助10
7秒前
7秒前
专注鱼完成签到,获得积分10
7秒前
今后应助执剑燃此生采纳,获得10
7秒前
淡然安雁发布了新的文献求助10
8秒前
ding应助高兴电脑采纳,获得10
8秒前
shuide发布了新的文献求助10
9秒前
9秒前
毛豆应助糖糖科研顺利呀采纳,获得10
10秒前
jimmy发布了新的文献求助10
10秒前
专注丸子发布了新的文献求助10
10秒前
敬酒不吃给酷酷李可爱婕的求助进行了留言
10秒前
保持呼吸完成签到,获得积分10
10秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301341
求助须知:如何正确求助?哪些是违规求助? 2936061
关于积分的说明 8475819
捐赠科研通 2609853
什么是DOI,文献DOI怎么找? 1424856
科研通“疑难数据库(出版商)”最低求助积分说明 662191
邀请新用户注册赠送积分活动 646202