Supervoxel-based targetless registration and identification of stable areas for deformed point clouds

点云 迭代最近点 计算机科学 人工智能 体素 计算机视觉 图像配准 鉴定(生物学) 特征(语言学) 点(几何) 变形(气象学) 算法 模式识别(心理学) 图像(数学) 数学 地质学 几何学 语言学 哲学 植物 海洋学 生物
作者
Yihui Yang,Volker Schwieger
出处
期刊:Journal of Applied Geodesy [De Gruyter]
被引量:1
标识
DOI:10.1515/jag-2022-0031
摘要

Abstract Accurate and robust 3D point cloud registration is the crucial part of the processing chain in terrestrial laser scanning (TLS)-based deformation monitoring that has been widely investigated in the last two decades. For the scenarios without signalized targets, however, automatic and robust point cloud registration becomes more challenging, especially when significant deformations and changes exist between the sequence of scans which may cause erroneous registrations. In this contribution, a fully automatic registration algorithm for point clouds with partially unstable areas is proposed, which does not require artificial targets or extracted feature points. In this method, coarsely registered point clouds are firstly over-segmented and represented by supervoxels based on the local consistency assumption of deformed objects. A confidence interval based on an approximate assumption of the stochastic model is considered to determine the local minimum detectable deformation for the identification of stable areas. The significantly deformed supervoxels between two scans can be detected progressively by an efficient iterative process, solely retaining the stable areas to be utilized for the fine registration. The proposed registration method is demonstrated on two datasets (both with two-epoch scans): An indoor scene simulated with different kinds of changes, including rigid body movement and shape deformation, and the Nesslrinna landslide close to Obergurgl, Austria. The experimental results show that the proposed algorithm exhibits a higher registration accuracy and thus a better detection of deformations in TLS point clouds compared with the existing voxel-based method and the variants of the iterative closest point (ICP) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助喜洋洋采纳,获得10
刚刚
PANSIXUAN完成签到 ,获得积分10
1秒前
善良香岚发布了新的文献求助10
1秒前
1秒前
huizi完成签到,获得积分20
1秒前
RichardZ完成签到,获得积分10
1秒前
1秒前
左左发布了新的文献求助10
2秒前
执着的怜寒应助哈哈哈haha采纳,获得40
2秒前
Cassie完成签到 ,获得积分10
3秒前
3秒前
雄i完成签到,获得积分10
3秒前
Chenly完成签到,获得积分10
4秒前
科目三应助韭黄采纳,获得10
4秒前
4秒前
轻松笙发布了新的文献求助10
4秒前
6秒前
6秒前
a1oft发布了新的文献求助10
7秒前
觅桃乌龙完成签到,获得积分10
7秒前
8秒前
melodyezi发布了新的文献求助10
9秒前
9秒前
FFFFFFF应助柚子采纳,获得10
9秒前
9℃发布了新的文献求助10
9秒前
MailkMonk发布了新的文献求助10
9秒前
ZQ完成签到,获得积分10
9秒前
9秒前
wcy发布了新的文献求助10
10秒前
10秒前
尹博士完成签到,获得积分10
10秒前
迟大猫应助周士乐采纳,获得10
11秒前
追寻的筝发布了新的文献求助10
11秒前
喜洋洋发布了新的文献求助10
11秒前
NANA完成签到,获得积分10
11秒前
乐乐应助协和_子鱼采纳,获得10
11秒前
淇淇完成签到,获得积分10
12秒前
12秒前
luuuuuing完成签到,获得积分10
12秒前
沉静的迎荷完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759