Supervoxel-based targetless registration and identification of stable areas for deformed point clouds

点云 迭代最近点 计算机科学 人工智能 体素 计算机视觉 图像配准 鉴定(生物学) 特征(语言学) 点(几何) 变形(气象学) 算法 模式识别(心理学) 图像(数学) 数学 地质学 几何学 语言学 哲学 植物 海洋学 生物
作者
Yihui Yang,Volker Schwieger
出处
期刊:Journal of Applied Geodesy [De Gruyter]
被引量:1
标识
DOI:10.1515/jag-2022-0031
摘要

Abstract Accurate and robust 3D point cloud registration is the crucial part of the processing chain in terrestrial laser scanning (TLS)-based deformation monitoring that has been widely investigated in the last two decades. For the scenarios without signalized targets, however, automatic and robust point cloud registration becomes more challenging, especially when significant deformations and changes exist between the sequence of scans which may cause erroneous registrations. In this contribution, a fully automatic registration algorithm for point clouds with partially unstable areas is proposed, which does not require artificial targets or extracted feature points. In this method, coarsely registered point clouds are firstly over-segmented and represented by supervoxels based on the local consistency assumption of deformed objects. A confidence interval based on an approximate assumption of the stochastic model is considered to determine the local minimum detectable deformation for the identification of stable areas. The significantly deformed supervoxels between two scans can be detected progressively by an efficient iterative process, solely retaining the stable areas to be utilized for the fine registration. The proposed registration method is demonstrated on two datasets (both with two-epoch scans): An indoor scene simulated with different kinds of changes, including rigid body movement and shape deformation, and the Nesslrinna landslide close to Obergurgl, Austria. The experimental results show that the proposed algorithm exhibits a higher registration accuracy and thus a better detection of deformations in TLS point clouds compared with the existing voxel-based method and the variants of the iterative closest point (ICP) algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
eli完成签到,获得积分10
2秒前
2秒前
minghai完成签到,获得积分20
3秒前
5秒前
Hello应助文静翅膀采纳,获得10
5秒前
WM发布了新的文献求助10
6秒前
欣喜面包完成签到,获得积分10
8秒前
8秒前
英俊的铭应助缥缈的飞荷采纳,获得10
8秒前
JY发布了新的文献求助10
9秒前
9秒前
恣意发布了新的文献求助10
11秒前
15秒前
17秒前
19秒前
情怀应助2023204306324采纳,获得10
19秒前
20秒前
人生如梦完成签到,获得积分10
20秒前
大力雁菡发布了新的文献求助10
20秒前
WxYzH完成签到,获得积分10
21秒前
21秒前
文静翅膀发布了新的文献求助10
21秒前
FashionBoy应助jersey采纳,获得10
22秒前
啾啾发布了新的文献求助10
22秒前
WanchengHu完成签到,获得积分10
23秒前
23秒前
maguodrgon发布了新的文献求助10
24秒前
贝壳完成签到,获得积分10
25秒前
一只呆果蝇完成签到,获得积分10
26秒前
26秒前
26秒前
26秒前
27秒前
28秒前
英俊的铭应助等待的网络采纳,获得10
28秒前
30秒前
30秒前
AU发布了新的文献求助30
31秒前
Baili应助健忘的飞雪采纳,获得10
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993490
求助须知:如何正确求助?哪些是违规求助? 3534168
关于积分的说明 11264831
捐赠科研通 3274008
什么是DOI,文献DOI怎么找? 1806220
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809662