Predicting network dynamics without requiring the knowledge of the interaction graph

子空间拓扑 计算机科学 网络拓扑 拓扑(电路) 网络动力学 图形 非线性系统 复杂网络 动态网络分析 生物网络 理论计算机科学 数学 人工智能 离散数学 组合数学 物理 操作系统 万维网 量子力学 计算机网络
作者
Bastian Prasse,Piet Van Mieghem
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:119 (44) 被引量:1
标识
DOI:10.1073/pnas.2205517119
摘要

A network consists of two interdependent parts: the network topology or graph, consisting of the links between nodes and the network dynamics, specified by some governing equations. A crucial challenge is the prediction of dynamics on networks, such as forecasting the spread of an infectious disease on a human contact network. Unfortunately, an accurate prediction of the dynamics seems hardly feasible, because the network is often complicated and unknown. In this work, given past observations of the dynamics on a fixed graph, we show the contrary: Even without knowing the network topology, we can predict the dynamics. Specifically, for a general class of deterministic governing equations, we propose a two-step prediction algorithm. First, we obtain a surrogate network by fitting past observations of every nodal state to the dynamical model. Second, we iterate the governing equations on the surrogate network to predict the dynamics. Surprisingly, even though there is no similarity between the surrogate topology and the true topology, the predictions are accurate, for a considerable prediction time horizon, for a broad range of observation times, and in the presence of a reasonable noise level. The true topology is not needed for predicting dynamics on networks, since the dynamics evolve in a subspace of astonishingly low dimension compared to the size and heterogeneity of the graph. Our results constitute a fresh perspective on the broad field of nonlinear dynamics on complex networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助张一二二二采纳,获得10
刚刚
刚刚
刚刚
刚刚
1秒前
在水一方应助努力的蜗牛采纳,获得10
1秒前
搜集达人应助nnmm11采纳,获得10
1秒前
1秒前
科研通AI2S应助Chnp采纳,获得10
1秒前
体贴半仙完成签到,获得积分20
2秒前
2秒前
2秒前
2秒前
灵巧的沛山完成签到,获得积分10
3秒前
哒哒猪完成签到,获得积分10
3秒前
酷波er应助他方世界采纳,获得10
4秒前
4秒前
zn315315完成签到,获得积分10
4秒前
弓长发布了新的文献求助10
4秒前
雷xy发布了新的文献求助10
5秒前
英姑应助wiink采纳,获得10
5秒前
5秒前
慕青应助真理采纳,获得10
5秒前
6秒前
juwairen119发布了新的文献求助10
6秒前
tracer发布了新的文献求助10
6秒前
网GHD发布了新的文献求助10
7秒前
CodeCraft应助完美的念柏采纳,获得10
7秒前
8秒前
jial发布了新的文献求助10
8秒前
一口完成签到,获得积分10
8秒前
9秒前
9秒前
桐桐应助杨昌琪采纳,获得10
9秒前
科研通AI6应助strawberry采纳,获得10
9秒前
Lft完成签到,获得积分10
10秒前
10秒前
九幺发布了新的文献求助10
10秒前
天天快乐应助九城采纳,获得10
10秒前
入梦发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362