二重多面体
数学
融合
阿贝尔群
群(周期表)
组合数学
域代数上的
纯数学
物理
量子力学
语言学
哲学
出处
期刊:Journal of The Australian Mathematical Society
[Cambridge University Press]
日期:2023-04-11
卷期号:: 1-32
标识
DOI:10.1017/s1446788723000022
摘要
Abstract For a finite abelian p -group A and a subgroup $\Gamma \le \operatorname {\mathrm {Aut}}(A)$ , we say that the pair $(\Gamma ,A)$ is fusion realizable if there is a saturated fusion system ${\mathcal {F}}$ over a finite p -group $S\ge A$ such that $C_S(A)=A$ , $\operatorname {\mathrm {Aut}}_{{\mathcal {F}}}(A)=\Gamma $ as subgroups of $\operatorname {\mathrm {Aut}}(A)$ , and . In this paper, we develop tools to show that certain representations are not fusion realizable in this sense. For example, we show, for $p=2$ or $3$ and $\Gamma $ one of the Mathieu groups, that the only ${\mathbb {F}}_p\Gamma $ -modules that are fusion realizable (up to extensions by trivial modules) are the Todd modules and in some cases their duals.
科研通智能强力驱动
Strongly Powered by AbleSci AI