A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems

计算机科学 分类 数学优化 水准点(测量) 人口 进化算法 多目标优化 对偶(语法数字) 可行区 选择(遗传算法) 约束(计算机辅助设计) 过程(计算) 算法 人工智能 机器学习 数学 几何学 地理 人口学 社会学 艺术 大地测量学 文学类 操作系统
作者
Qian Bao,Maocai Wang,Guangming Dai,Xiaoyu Chen,Zhiming Song,Shuijia Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119258-119258 被引量:12
标识
DOI:10.1016/j.eswa.2022.119258
摘要

The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing with CMOPs with complex feasible regions, some evolutionary algorithms suffer from great challenges in converging to the constrained Pareto front (CPF) with well-distributed feasible solutions. To address this issue, this paper proposes a dual-population based bidirectional coevolution algorithm, called DBC-CMOEA, which aims to converge to the CPF using promising solutions explored from both feasible and infeasible regions. To do so, DBC-CMOEA maintains two populations and an archive, where the dual-population is complementary in the search process and the archive is used to retain promising feasible and infeasible solutions, thus facilitating information exchange between these two populations. For updating the archive, a nondominated sorting procedure and an angle-based selected scheme are conducted to store infeasible and feasible solutions, as they can help to maintain the diversity of the search and find more feasible regions. To evolve the CPF from the bidirectional side of the feasible region, a novel mating selection strategy is used to choose appropriate mating parents. In comparison with some related constraint multi-objective optimization algorithms on a number of benchmark problems, experimental results show that the proposed algorithm performs better than the state-of-the-art constrained multi-objective evolutionary optimizers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清脆乐曲发布了新的文献求助10
刚刚
1秒前
1秒前
帆帆发布了新的文献求助20
1秒前
wang发布了新的文献求助10
1秒前
2秒前
我是老大应助xiu采纳,获得10
2秒前
去有风的地方完成签到,获得积分10
2秒前
leinuo077发布了新的文献求助10
3秒前
3秒前
英俊的铭应助哈哈哈采纳,获得10
4秒前
5秒前
5秒前
6秒前
6秒前
充电宝应助12356采纳,获得10
6秒前
我是老大应助12356采纳,获得10
6秒前
PPSlu完成签到,获得积分10
6秒前
于佳卉发布了新的文献求助10
7秒前
hj发布了新的文献求助10
9秒前
xiu完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
浅是宝贝发布了新的文献求助10
11秒前
领导范儿应助风清扬采纳,获得10
12秒前
ding应助清脆乐曲采纳,获得10
14秒前
14秒前
静默完成签到,获得积分10
14秒前
dshh完成签到,获得积分10
14秒前
852应助liyi采纳,获得30
15秒前
舒服的尔丝完成签到,获得积分10
15秒前
隐形曼青应助任娜采纳,获得10
16秒前
zh20130发布了新的文献求助10
17秒前
18秒前
19秒前
无花果应助zhuhaiting采纳,获得10
20秒前
20秒前
李雪完成签到,获得积分10
21秒前
ClaudiaCY发布了新的文献求助10
21秒前
Max完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602404
求助须知:如何正确求助?哪些是违规求助? 4011681
关于积分的说明 12419962
捐赠科研通 3691873
什么是DOI,文献DOI怎么找? 2035322
邀请新用户注册赠送积分活动 1068516
科研通“疑难数据库(出版商)”最低求助积分说明 953096