清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A dual-population based bidirectional coevolution algorithm for constrained multi-objective optimization problems

计算机科学 分类 数学优化 水准点(测量) 人口 进化算法 多目标优化 对偶(语法数字) 可行区 选择(遗传算法) 约束(计算机辅助设计) 过程(计算) 算法 人工智能 机器学习 数学 几何学 地理 人口学 社会学 艺术 大地测量学 文学类 操作系统
作者
Qian Bao,Maocai Wang,Guangming Dai,Xiaoyu Chen,Zhiming Song,Shuijia Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:215: 119258-119258 被引量:12
标识
DOI:10.1016/j.eswa.2022.119258
摘要

The balance between multiple objectives and various constraints is the key to solving constrained multi-objective optimization problems (CMOPs). When dealing with CMOPs with complex feasible regions, some evolutionary algorithms suffer from great challenges in converging to the constrained Pareto front (CPF) with well-distributed feasible solutions. To address this issue, this paper proposes a dual-population based bidirectional coevolution algorithm, called DBC-CMOEA, which aims to converge to the CPF using promising solutions explored from both feasible and infeasible regions. To do so, DBC-CMOEA maintains two populations and an archive, where the dual-population is complementary in the search process and the archive is used to retain promising feasible and infeasible solutions, thus facilitating information exchange between these two populations. For updating the archive, a nondominated sorting procedure and an angle-based selected scheme are conducted to store infeasible and feasible solutions, as they can help to maintain the diversity of the search and find more feasible regions. To evolve the CPF from the bidirectional side of the feasible region, a novel mating selection strategy is used to choose appropriate mating parents. In comparison with some related constraint multi-objective optimization algorithms on a number of benchmark problems, experimental results show that the proposed algorithm performs better than the state-of-the-art constrained multi-objective evolutionary optimizers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
electricelectric完成签到,获得积分0
31秒前
Huzhu应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
浮游应助科研通管家采纳,获得10
33秒前
33秒前
调皮醉波完成签到 ,获得积分10
57秒前
1分钟前
爱思考的小笨笨完成签到,获得积分10
1分钟前
闻巷雨完成签到 ,获得积分10
1分钟前
Akim应助VDC采纳,获得10
1分钟前
2分钟前
VDC发布了新的文献求助10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
ZYP应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
瘦瘦的枫叶完成签到 ,获得积分10
3分钟前
nikishoon发布了新的文献求助10
3分钟前
Antonio完成签到 ,获得积分0
3分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
ZYP应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
慕青应助科研通管家采纳,获得10
4分钟前
llll完成签到 ,获得积分0
5分钟前
深情安青应助池雨采纳,获得10
5分钟前
mmmmmmgm完成签到 ,获得积分10
6分钟前
顾矜应助wyling采纳,获得10
6分钟前
julienCCC完成签到,获得积分10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
ZYP应助科研通管家采纳,获得10
6分钟前
浮游应助科研通管家采纳,获得10
6分钟前
digger2023完成签到 ,获得积分0
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498422
求助须知:如何正确求助?哪些是违规求助? 4595652
关于积分的说明 14449590
捐赠科研通 4528514
什么是DOI,文献DOI怎么找? 2481546
邀请新用户注册赠送积分活动 1465666
关于科研通互助平台的介绍 1438429