脱落酸
褪黑素
衰老
生物
细胞生物学
拟南芥
化学
生物化学
内分泌学
突变体
基因
作者
Yanliang Guo,Jingyi Zhu,Jiahe Liu,Yuxing Xue,Jingjing Chang,Yong Zhang,Golam Jalal Ahammed,Chunhua Wei,Chaozhi Ma,Pingfang Li,Xian Zhang,Hao Li
摘要
Precocious leaf senescence can reduce crop yield and quality by limiting the growth stage. Melatonin has been shown to delay leaf senescence; however, the underlying mechanism remains obscure. Here, we show that melatonin offsets abscisic acid (ABA) to protect photosystem II and delay the senescence of attached old leaves under the light. Melatonin induced H2 O2 accumulation accompanied by an upregulation of melon respiratory burst oxidase homolog D (CmRBOHD) under ABA-induced stress. Both melatonin and H2 O2 induced the accumulation of cytoplasmic-free Ca2+ ([Ca2+ ]cyt ) in response to ABA, while blocking of Ca2+ influx channels attenuated melatonin- and H2 O2 -induced ABA tolerance. CmRBOHD overexpression induced [Ca2+ ]cyt accumulation and delayed leaf senescence, whereas deletion of Arabidopsis AtRBOHD, a homologous gene of CmRBOHD, compromised the melatonin-induced [Ca2+ ]cyt accumulation and delay of leaf senescence in Arabidopsis under ABA stress. Furthermore, melatonin, H2 O2 and Ca2+ attenuated ABA-induced K+ efflux and subsequent cell death. CmRBOHD overexpression and AtRBOHD deletion alleviated and aggravated the ABA-induced K+ efflux, respectively. Taken together, our study unveils a new mechanism by which melatonin offsets ABA action to delay leaf senescence via RBOHD-dependent H2 O2 production that triggers [Ca2+ ]cyt accumulation and subsequently inhibits K+ efflux and delays cell death/leaf senescence in response to ABA.
科研通智能强力驱动
Strongly Powered by AbleSci AI