#6569 PREDICTION OF ALL-CAUSE MORTALITY FOR CHRONIC KIDNEY DISEASE PATIENTS USING FOUR MODELS OF MACHINE LEARNING

接收机工作特性 医学 随机森林 逻辑回归 人口 观察研究 统计 机器学习 预测建模 人工智能 贝叶斯网络 肾脏疾病 内科学 计算机科学 数学 环境卫生
作者
Nu Thuy Dung Tran,Margaux Balezeaux,Granal Maelys,Denis Fouque,Ducher Michel,J. P. Fauvel
出处
期刊:Nephrology Dialysis Transplantation [Oxford University Press]
卷期号:38 (Supplement_1) 被引量:1
标识
DOI:10.1093/ndt/gfad063a_6569
摘要

Abstract Background and Aims Prediction tools developed from general population data to predict all-cause mortality are not adapted to patients with chronic kidney disease (CKD), as this population has a higher risk of mortality. This study aimed to create a clinical prediction tool with good predictive performance to predict 2-year all-cause mortality in patients with stage 4 or 5 CKD using an innovative approach with machine learning models and a synthetic population. Method The national, observational, descriptive and prospective Photo-Graphe 3 study was used to create the learning database. Four models (i) logistic regression; (ii) deep learning; (iii) random forest and (iv) Bayesian network were used to create four prediction tools. The performance of each model, including the area under the receiver operating characteristic curve (AUC-ROC) value, accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), was evaluated and compared using 10-fold cross-validation. The prediction tool with the best performance was selected and optimized using a synthetic population and the explanatory variables most related to mortality. The synthetic population was created by the Bayesian imputation method. The variables most associated with 2-year all-cause mortality were determined by compromising the number of variables selected and the AUC-ROC value when successively adding the variable according to its percentage variance value. The performance of the optimized prediction tool in predicting 2-year mortality was then evaluated by 10-fold cross validation. Results All prediction tools except the one developed with the random forest model showed satisfactory discrimination (AUC-ROC ≥ 0.70). Overall, the prediction tools developed using the Bayesian network and logistic regression tended to have better performance. Although not significantly different from logistic regression, the prediction tool developed using the Bayesian network was chosen for further development because of its advantages. From the 534 patients in the study population, a synthetic population of 2000 patients (survivor:death ratio = 1:1) was created. The seven most informative variables ranked in descending order were: age, ESA, CV history, smoking status, 25-OH vitamin D level, PTH level, and ferritin level (Figure 1). The optimized clinical prediction tool had satisfactory internal performance. The mean accuracy was 73.8% (SD = 3.6), the mean AUC-ROC was 0.81 (SD = 0.03), the mean sensitivity was 71.0% (SD = 5.4), the mean specificity was 76.5% (SD = 3.0), the mean PPV was 75.1% (SD = 3.2), and the mean NPV was 72.6% (SD = 4.1). Conclusion Bayesian network model was used to create a seven-variable prediction tool to predict the 2-year all-cause mortality in patients with stage 4–5 CKD. This prediction tool has a satisfactory performance. Prior to external validation, the proposed prediction tool can be used at: https://bit.ly/3JPhrkh for research purpose. This is the first time that a synthetic population has been applied to create predictive models. In this study, the synthetic population showed its advantage in dealing with sample size issues in developing predictive models and in improving the performance of the prediction tool in terms of sensitivity and PPV.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘华银发布了新的文献求助10
刚刚
Life发布了新的文献求助10
1秒前
yu发布了新的文献求助10
1秒前
缥缈的青旋完成签到,获得积分10
1秒前
lee完成签到,获得积分10
2秒前
aer123完成签到,获得积分10
2秒前
yan发布了新的文献求助10
2秒前
4秒前
猪肉超人菜婴蚊完成签到,获得积分10
4秒前
小紫发布了新的文献求助10
5秒前
旅人完成签到 ,获得积分10
5秒前
6秒前
7秒前
冷静短靴完成签到,获得积分10
8秒前
失眠采白完成签到,获得积分10
9秒前
louis0517完成签到,获得积分10
10秒前
平淡南松发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
PeterLin应助荟萃分析采纳,获得10
13秒前
量子星尘发布了新的文献求助10
15秒前
Nnn完成签到,获得积分10
16秒前
思源应助DXM采纳,获得10
16秒前
齐嘉懿发布了新的文献求助10
17秒前
fan完成签到 ,获得积分10
18秒前
管逸含完成签到,获得积分10
18秒前
yan发布了新的文献求助10
18秒前
丝丝发布了新的文献求助10
19秒前
dique3hao完成签到 ,获得积分10
21秒前
22秒前
24秒前
25秒前
26秒前
26秒前
兔子发布了新的文献求助10
30秒前
阿鑫完成签到 ,获得积分10
30秒前
Wency发布了新的文献求助30
31秒前
32秒前
33秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4218062
求助须知:如何正确求助?哪些是违规求助? 3752029
关于积分的说明 11798067
捐赠科研通 3416754
什么是DOI,文献DOI怎么找? 1875121
邀请新用户注册赠送积分活动 928966
科研通“疑难数据库(出版商)”最低求助积分说明 837878