Water Vapor Induced Superionic Conductivity in ZnPS3

化学 离子电导率 电导率 离子 离子键合 水蒸气 化学物理 介电谱 离子运输机 快离子导体 无机化学 分析化学(期刊) 电化学 电极 物理化学 电解质 环境化学 有机化学
作者
Zachery W. B. Iton,Brian C. Lee,A. Jiang,Seong Shik Kim,Michael Brady,Sammy Shaker,Kimberly A. See
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (24): 13312-13325 被引量:7
标识
DOI:10.1021/jacs.3c03368
摘要

Next-generation batteries based on sustainable multivalent working ions, such as Mg2+, Ca2+, or Zn2+, have the potential to improve the performance, safety, and capacity of current battery systems. Development of such multivalent ion batteries is hindered by a lack of understanding of multivalent ionics in solids, which is crucial for many aspects of battery operation. For instance, multivalent ionic transport was assumed to be correlated with electronic transport; however, we have previously shown that Zn2+ can conduct in electronically insulating ZnPS3 with a low activation energy of 350 meV, albeit with low ionic conductivity. Here, we show that exposure of ZnPS3 to environments with water vapor at different relative humidities results in room-temperature conductivity increases of several orders of magnitude, reaching as high as 1.44 mS cm-1 without decomposition or structural changes. We utilize impedance spectroscopy with ion selective electrodes, ionic transference number measurements, and deposition and stripping of Zn metal, to confirm that both Zn2+ and H+ act as mobile ions. The contribution from Zn2+ to the ionic conductivity in water vapor exposed ZnPS3 is high, representing superionic Zn2+ conduction. The present study demonstrates that it is possible to enhance multivalent ion conduction of electronically insulating solids as a result of water adsorption and highlights the importance of ensuring that increased conductivity in water vapor exposed multivalent ion systems is in fact due to mobile multivalent ions and not solely H+.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
铭心完成签到,获得积分10
1秒前
1秒前
2秒前
becl完成签到,获得积分10
2秒前
3秒前
小兰花完成签到,获得积分10
3秒前
脑洞疼应助kk采纳,获得20
3秒前
5秒前
yznfly应助sbw采纳,获得20
6秒前
6秒前
7秒前
xusuizi发布了新的文献求助10
7秒前
7秒前
8秒前
无花果应助谦让烤鸡采纳,获得10
9秒前
Viola发布了新的文献求助10
10秒前
10秒前
11秒前
研友_5Zl9D8发布了新的文献求助10
12秒前
unique444发布了新的文献求助10
12秒前
牛奶糖完成签到 ,获得积分10
13秒前
May发布了新的文献求助10
14秒前
大个应助乘风破浪采纳,获得10
16秒前
辉辉028发布了新的文献求助10
17秒前
强壮的美女完成签到 ,获得积分10
18秒前
平头哥哥完成签到 ,获得积分10
18秒前
zsk1122完成签到,获得积分10
19秒前
李kylin发布了新的文献求助10
19秒前
19秒前
19秒前
wsq155关注了科研通微信公众号
19秒前
20秒前
20秒前
20秒前
22秒前
小马同学发布了新的文献求助10
23秒前
24秒前
谦让烤鸡发布了新的文献求助10
24秒前
24秒前
sbw发布了新的文献求助10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966114
求助须知:如何正确求助?哪些是违规求助? 3511490
关于积分的说明 11158539
捐赠科研通 3246107
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324