Identifying risk of stillbirth using machine learning

医学 逻辑回归 随机森林 杠杆(统计) 机器学习 怀孕 预测建模 产科 预测值 人工智能 统计 计算机科学 内科学 数学 遗传学 生物
作者
Tess E.K. Cersonsky,Nina K. Ayala,Halit Pınar,Donald J. Dudley,George R. Saade,Robert M. Silver,Adam K. Lewkowitz
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
卷期号:229 (3): 327.e1-327.e16
标识
DOI:10.1016/j.ajog.2023.06.017
摘要

Previous predictive models using logistic regression for stillbirth do not leverage the advanced and nuanced techniques involved in sophisticated machine learning methods, such as modeling nonlinear relationships between outcomes.This study aimed to create and refine machine learning models for predicting stillbirth using data available before viability (22-24 weeks) and throughout pregnancy, as well as demographic, medical, and prenatal visit data, including ultrasound and fetal genetics.This is a secondary analysis of the Stillbirth Collaborative Research Network, which included data from pregnancies resulting in stillborn and live-born infants delivered at 59 hospitals in 5 diverse regions across the United States from 2006 to 2009. The primary aim was the creation of a model for predicting stillbirth using data available before viability. Secondary aims included refining models with variables available throughout pregnancy and determining variable importance.Among 3000 live births and 982 stillbirths, 101 variables of interest were identified. Of the models incorporating data available before viability, the random forests model had 85.1% accuracy (area under the curve) and high sensitivity (88.6%), specificity (85.3%), positive predictive value (85.3%), and negative predictive value (84.8%). A random forests model using data collected throughout pregnancy resulted in accuracy of 85.0%; this model had 92.2% sensitivity, 77.9% specificity, 84.7% positive predictive value, and 88.3% negative predictive value. Important variables in the previability model included previous stillbirth, minority race, gestational age at the earliest prenatal visit and ultrasound, and second-trimester serum screening.Applying advanced machine learning techniques to a comprehensive database of stillbirths and live births with unique and clinically relevant variables resulted in an algorithm that could accurately identify 85% of pregnancies that would result in stillbirth, before they reached viability. Once validated in representative databases reflective of the US birthing population and then prospectively, these models may provide effective risk stratification and clinical decision-making support to better identify and monitor those at risk of stillbirth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
VVValentin发布了新的文献求助30
1秒前
zhlh完成签到,获得积分10
2秒前
2秒前
2秒前
yar应助大胆的不斜采纳,获得10
4秒前
5秒前
科研通AI5应助土豆采纳,获得10
7秒前
7秒前
煮饭吃Zz完成签到 ,获得积分10
9秒前
zho发布了新的文献求助10
11秒前
云烟完成签到,获得积分10
12秒前
传奇3应助二行采纳,获得10
13秒前
科研通AI2S应助二行采纳,获得10
13秒前
小二郎应助二行采纳,获得10
13秒前
CipherSage应助二行采纳,获得10
13秒前
今后应助二行采纳,获得10
13秒前
在水一方应助二行采纳,获得10
13秒前
Eve丶Paopaoxuan应助二行采纳,获得10
13秒前
扶余山本完成签到 ,获得积分10
15秒前
18秒前
害羞的醉卉完成签到 ,获得积分10
19秒前
栗子壳应助熊仔一百采纳,获得50
20秒前
无花果应助沈佳琪采纳,获得10
20秒前
20秒前
完美世界应助djs采纳,获得10
20秒前
21秒前
oydent发布了新的文献求助10
22秒前
悦耳的乐松完成签到,获得积分10
23秒前
23秒前
yangkai发布了新的文献求助10
24秒前
25秒前
25秒前
26秒前
LL完成签到,获得积分10
26秒前
风羽完成签到,获得积分10
26秒前
26秒前
是冬天完成签到 ,获得积分10
28秒前
一方通行发布了新的文献求助10
28秒前
紫禁城的雪花完成签到,获得积分10
29秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3479574
求助须知:如何正确求助?哪些是违规求助? 3070143
关于积分的说明 9116766
捐赠科研通 2761878
什么是DOI,文献DOI怎么找? 1515589
邀请新用户注册赠送积分活动 700985
科研通“疑难数据库(出版商)”最低求助积分说明 699985