Identifying risk of stillbirth using machine learning

医学 逻辑回归 随机森林 杠杆(统计) 机器学习 怀孕 预测建模 产科 预测值 人工智能 统计 计算机科学 内科学 数学 遗传学 生物
作者
Tess E.K. Cersonsky,Nina K. Ayala,Halit Pınar,Donald J. Dudley,George R. Saade,Robert M. Silver,Adam K. Lewkowitz
出处
期刊:American Journal of Obstetrics and Gynecology [Elsevier]
卷期号:229 (3): 327.e1-327.e16
标识
DOI:10.1016/j.ajog.2023.06.017
摘要

Previous predictive models using logistic regression for stillbirth do not leverage the advanced and nuanced techniques involved in sophisticated machine learning methods, such as modeling nonlinear relationships between outcomes.This study aimed to create and refine machine learning models for predicting stillbirth using data available before viability (22-24 weeks) and throughout pregnancy, as well as demographic, medical, and prenatal visit data, including ultrasound and fetal genetics.This is a secondary analysis of the Stillbirth Collaborative Research Network, which included data from pregnancies resulting in stillborn and live-born infants delivered at 59 hospitals in 5 diverse regions across the United States from 2006 to 2009. The primary aim was the creation of a model for predicting stillbirth using data available before viability. Secondary aims included refining models with variables available throughout pregnancy and determining variable importance.Among 3000 live births and 982 stillbirths, 101 variables of interest were identified. Of the models incorporating data available before viability, the random forests model had 85.1% accuracy (area under the curve) and high sensitivity (88.6%), specificity (85.3%), positive predictive value (85.3%), and negative predictive value (84.8%). A random forests model using data collected throughout pregnancy resulted in accuracy of 85.0%; this model had 92.2% sensitivity, 77.9% specificity, 84.7% positive predictive value, and 88.3% negative predictive value. Important variables in the previability model included previous stillbirth, minority race, gestational age at the earliest prenatal visit and ultrasound, and second-trimester serum screening.Applying advanced machine learning techniques to a comprehensive database of stillbirths and live births with unique and clinically relevant variables resulted in an algorithm that could accurately identify 85% of pregnancies that would result in stillbirth, before they reached viability. Once validated in representative databases reflective of the US birthing population and then prospectively, these models may provide effective risk stratification and clinical decision-making support to better identify and monitor those at risk of stillbirth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助guojingjing采纳,获得10
2秒前
连糜完成签到 ,获得积分10
2秒前
2秒前
2秒前
Demons完成签到,获得积分10
3秒前
4秒前
lgh完成签到,获得积分10
4秒前
sakurai完成签到,获得积分10
4秒前
Xl完成签到,获得积分10
5秒前
6秒前
天真依玉完成签到,获得积分10
6秒前
重要的溪流完成签到,获得积分10
6秒前
海洋完成签到,获得积分10
6秒前
和谐初南完成签到 ,获得积分10
6秒前
英俊亦巧完成签到,获得积分10
7秒前
笑一笑完成签到,获得积分10
7秒前
Yiling完成签到,获得积分10
7秒前
Kerouer完成签到 ,获得积分10
8秒前
卓若之完成签到 ,获得积分10
8秒前
科研通AI5应助炙热的平灵采纳,获得10
9秒前
10秒前
沉静的红酒完成签到,获得积分10
10秒前
DONNYTIO完成签到,获得积分10
10秒前
乔qiao完成签到,获得积分10
11秒前
83366完成签到,获得积分10
11秒前
小满完成签到,获得积分10
11秒前
伶俐的飞鸟完成签到 ,获得积分10
11秒前
hanshishengye完成签到 ,获得积分10
13秒前
charm完成签到,获得积分10
13秒前
Mr.Jian完成签到,获得积分10
13秒前
Ling完成签到,获得积分10
14秒前
Miya_han完成签到,获得积分10
14秒前
端庄的魔镜完成签到 ,获得积分10
14秒前
广旭完成签到 ,获得积分10
15秒前
木子完成签到,获得积分10
15秒前
Stellar777发布了新的文献求助10
16秒前
COCO完成签到,获得积分10
16秒前
YC完成签到,获得积分10
16秒前
文承龙完成签到,获得积分10
17秒前
Young完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555935
求助须知:如何正确求助?哪些是违规求助? 3131542
关于积分的说明 9391519
捐赠科研通 2831325
什么是DOI,文献DOI怎么找? 1556415
邀请新用户注册赠送积分活动 726573
科研通“疑难数据库(出版商)”最低求助积分说明 715890