Groundwater level prediction with meteorologically sensitive Gated Recurrent Unit (GRU) neural networks

环境科学 均方误差 超参数 地下水 水文学(农业) 气象学 统计 计算机科学 数学 机器学习 地质学 地理 岩土工程
作者
Amin Gharehbaghi,Redvan Ghasemlounia,Farshad Ahmadi,Mohammad Albaji
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:612: 128262-128262
标识
DOI:10.1016/j.jhydrol.2022.128262
摘要

• Different layer structures of GRU based models by the seq2seq regression module are developed to predict regional mean monthly GWL in Urmia plain. • Using Shannon entropy process, the effective variables on GWL are determined as regional mean monthly air temperature, precipitation, total water diversion discharge. • Based on the performance evaluation metrics, newly recommended model (3) is chosen as the best model. Precise estimation of groundwater level (GWL) fluctuations has a substantial effect on water resources management. In the present study, to forecast the regional mean monthly time series groundwater level ( GWL ) with a range of 4.82 (m) in Urmia plain, three different layer structures of Gated Recurrent Unit (GRU) deep learning-based neural network models via the module of sequence-to-sequence regression are designed. In this sense, 180-time series datasets of regional mean monthly meteorological, hydrological, and observed water table depths of 42 different monitoring piezometers during the period of Oct 2002–Sep 2017 are employed as the input variables. By using Shannon entropy method, the most influential parameters on GWL are determined as regional mean monthly air temperature ( T am ), precipitation ( P m ), total (sum) water diversion discharge ( W dm ) of four main rivers. Nevertheless, Cosine amplitude sensitivity analysis confirmed T am as a dominant factor. For preventing overfitting problem, an algorithm tuning technique via different kinds of hyperparameters is operated. In this respect, several scenarios are implemented and the optimal hyperparameters are accomplished via the trial-and-error process. As stated by the performance evaluation metrics, Model Grading process, and Total Learnable Parameters ( TLP ) value, the innovative and unique suggested model (3), entitled GRU2+, (Double-GRU model coupled with Addition layer (+)) with seven layers is carefully chosen as the best model. The unique suggested model (3) in the optimal hyperparameters, resulted in an R 2 of 0.91, a total grade ( TG ) of 7.76, an RMSE of 0.094 (m), and a running time of 47 (s). Thus, the model (3) can be certainly employed as an effective model to forecast GWL in different agricultural areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
滴答滴发布了新的文献求助10
1秒前
only发布了新的文献求助10
2秒前
科研通AI2S应助yx_cheng采纳,获得10
2秒前
3秒前
由哎完成签到,获得积分10
4秒前
4秒前
十七发布了新的文献求助10
5秒前
5秒前
一路高飛完成签到,获得积分10
5秒前
敏感的星星完成签到 ,获得积分10
5秒前
7秒前
8秒前
guoer发布了新的文献求助10
9秒前
Rita发布了新的文献求助10
11秒前
时迁发布了新的文献求助10
14秒前
斯文败类应助sulh采纳,获得10
14秒前
应三问完成签到 ,获得积分10
15秒前
美丽电源发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
娇气的妙之完成签到,获得积分10
26秒前
zqy发布了新的文献求助10
26秒前
26秒前
bkagyin应助tuantuantuan采纳,获得10
28秒前
淡淡的幻竹完成签到,获得积分10
28秒前
害羞雨莲完成签到,获得积分10
28秒前
31秒前
31秒前
玛丽驳回了烟花应助
32秒前
33秒前
Remote发布了新的文献求助10
37秒前
37秒前
赢赢发布了新的文献求助10
37秒前
38秒前
sulh发布了新的文献求助10
38秒前
默默的皮牙子完成签到,获得积分10
40秒前
wufang发布了新的文献求助10
42秒前
Orange应助11采纳,获得10
42秒前
欣喜紫真完成签到,获得积分10
42秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323