The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode

强化学习 水准点(测量) 计算机科学 能源管理 算法 汽车工程 数学优化 工程类 能量(信号处理) 人工智能 数学 大地测量学 统计 地理
作者
Changcheng Wu,Jiageng Ruan,Hanghang Cui,Bin Zhang,Tongyang Li,Kaixuan Zhang
出处
期刊:Energy [Elsevier]
卷期号:262: 125084-125084 被引量:61
标识
DOI:10.1016/j.energy.2022.125084
摘要

As the performance of Energy Management Strategy (EMS) is crucial for the energy efficiency of Hybrid Electric Vehicles (HEVs), a Deep Reinforcement Learning (DRL)-based algorithm, namely Twin Delayed Deep Deterministic Policy Gradient (TD3), is adopted to design EMS for the power Charge-Sustained (CS) stage of a multi-mode plug-in Hybrid Electric Vehicle (HEV). In addition, EMS is improved by combining the actor-network of TD3 with Gumbel-Softmax to realize mode selection and torque distribution simultaneously, which is a discrete (mode)-continuous (engine speed) hybrid action space and not applicable in original TD3. To reduce the unreasonable exploration of agents in discrete action, a rule-based mode control mechanism (RBMCM) is designed and involved in EMS. The improved algorithm speeds up the learning process and achieves better fuel economy. Simulation results show that the gap between the proposed strategy and the benchmark dynamic programming (DP) is reduced to 2.55% in the selected training cycle. Regarding the unknown testing cycles, the fuel economy of agents trained by the improved method overperforms traditional DRL-based EMS when it reaches more than 90% of the DP-based benchmarking. In conclusion, the proposed method provides a theoretical foundation for the solution of the hybrid space optimization problem for hybrid systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王木木发布了新的文献求助10
刚刚
刚刚
Er魁发布了新的文献求助10
1秒前
111完成签到,获得积分10
1秒前
叶轮机械完成签到,获得积分10
1秒前
HCT完成签到,获得积分10
1秒前
大模型应助掮客采纳,获得10
1秒前
2秒前
琦琦完成签到 ,获得积分10
2秒前
2秒前
3秒前
烂漫的南风完成签到,获得积分10
3秒前
淡定的夏青完成签到,获得积分10
3秒前
3秒前
缓慢钢笔发布了新的文献求助10
3秒前
pj发布了新的文献求助10
4秒前
xiaoze完成签到,获得积分10
4秒前
huang完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
我不理解完成签到,获得积分10
5秒前
qiuxu完成签到,获得积分10
5秒前
周少完成签到,获得积分0
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
醉熏的伊完成签到,获得积分10
7秒前
xiaoze发布了新的文献求助10
7秒前
7秒前
Jenny完成签到 ,获得积分10
8秒前
ZSC发布了新的文献求助10
8秒前
8秒前
面壁人2233完成签到,获得积分10
8秒前
咳炎泥马完成签到,获得积分10
9秒前
gaohar完成签到,获得积分10
9秒前
9秒前
10秒前
FashionBoy应助雪白的山雁采纳,获得10
10秒前
Tianling完成签到,获得积分0
11秒前
赘婿应助山君采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664967
求助须知:如何正确求助?哪些是违规求助? 4873787
关于积分的说明 15110464
捐赠科研通 4824067
什么是DOI,文献DOI怎么找? 2582622
邀请新用户注册赠送积分活动 1536541
关于科研通互助平台的介绍 1495147