The application of machine learning based energy management strategy in multi-mode plug-in hybrid electric vehicle, part I: Twin Delayed Deep Deterministic Policy Gradient algorithm design for hybrid mode

强化学习 水准点(测量) 计算机科学 能源管理 算法 汽车工程 数学优化 工程类 能量(信号处理) 人工智能 数学 大地测量学 统计 地理
作者
Changcheng Wu,Jiageng Ruan,Hanghang Cui,Bin Zhang,Tongyang Li,Kaixuan Zhang
出处
期刊:Energy [Elsevier BV]
卷期号:262: 125084-125084 被引量:54
标识
DOI:10.1016/j.energy.2022.125084
摘要

As the performance of Energy Management Strategy (EMS) is crucial for the energy efficiency of Hybrid Electric Vehicles (HEVs), a Deep Reinforcement Learning (DRL)-based algorithm, namely Twin Delayed Deep Deterministic Policy Gradient (TD3), is adopted to design EMS for the power Charge-Sustained (CS) stage of a multi-mode plug-in Hybrid Electric Vehicle (HEV). In addition, EMS is improved by combining the actor-network of TD3 with Gumbel-Softmax to realize mode selection and torque distribution simultaneously, which is a discrete (mode)-continuous (engine speed) hybrid action space and not applicable in original TD3. To reduce the unreasonable exploration of agents in discrete action, a rule-based mode control mechanism (RBMCM) is designed and involved in EMS. The improved algorithm speeds up the learning process and achieves better fuel economy. Simulation results show that the gap between the proposed strategy and the benchmark dynamic programming (DP) is reduced to 2.55% in the selected training cycle. Regarding the unknown testing cycles, the fuel economy of agents trained by the improved method overperforms traditional DRL-based EMS when it reaches more than 90% of the DP-based benchmarking. In conclusion, the proposed method provides a theoretical foundation for the solution of the hybrid space optimization problem for hybrid systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助顺利秋灵采纳,获得10
刚刚
科研蚂蚁完成签到,获得积分10
刚刚
hill完成签到,获得积分10
刚刚
舒心小凡完成签到,获得积分10
1秒前
希望天下0贩的0应助eth采纳,获得10
1秒前
jhcraul完成签到,获得积分10
1秒前
诗梦完成签到,获得积分10
1秒前
fqk完成签到,获得积分10
1秒前
1秒前
1秒前
KKKKK完成签到,获得积分10
2秒前
牛油果完成签到,获得积分10
3秒前
Flynn完成签到 ,获得积分10
3秒前
材化硕士完成签到,获得积分10
3秒前
科研人完成签到 ,获得积分10
4秒前
能干世倌完成签到,获得积分10
4秒前
ss完成签到,获得积分10
5秒前
MASAMI发布了新的文献求助10
5秒前
萨特完成签到,获得积分10
5秒前
5秒前
冉小维完成签到,获得积分10
6秒前
悟空完成签到 ,获得积分10
6秒前
无死何能生新颜完成签到,获得积分10
6秒前
大模型应助nana采纳,获得10
6秒前
小小完成签到 ,获得积分10
7秒前
马仔酷酷地完成签到,获得积分10
7秒前
Harry完成签到,获得积分10
7秒前
科研通AI5应助铭鑫采纳,获得10
7秒前
taotao完成签到,获得积分10
8秒前
麦麦完成签到,获得积分10
8秒前
科研通AI6应助jhcraul采纳,获得10
8秒前
YUMI完成签到,获得积分10
8秒前
8秒前
甜甜的大米完成签到,获得积分10
9秒前
邵123456789完成签到,获得积分10
9秒前
brain_drJ完成签到,获得积分20
9秒前
9秒前
9秒前
心潮澎湃完成签到,获得积分10
9秒前
EYRE完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571325
求助须知:如何正确求助?哪些是违规求助? 3992463
关于积分的说明 12358271
捐赠科研通 3665475
什么是DOI,文献DOI怎么找? 2020103
邀请新用户注册赠送积分活动 1054441
科研通“疑难数据库(出版商)”最低求助积分说明 942019