Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography

医学 骨量减少 接收机工作特性 骨质疏松症 队列 置信区间 放射科 逻辑回归 无线电技术 核医学 曲线下面积 内科学 骨矿物
作者
Qianrong Xie,Yue Chen,Yimei Hu,Fanwei Zeng,Pingxi Wang,Xu Lin,Jian Wu,Jie Li,Jing Zhu,Ming Xiang,Fanxin Zeng
出处
期刊:BMC Medical Imaging [Springer Nature]
卷期号:22 (1) 被引量:26
标识
DOI:10.1186/s12880-022-00868-5
摘要

Abstract Background To develop and validate a quantitative computed tomography (QCT) based radiomics model for discriminating osteoporosis and osteopenia. Methods A total of 635 patients underwent QCT were retrospectively included from November 2016 to November 2019. The patients with osteopenia or osteoporosis (N = 590) were divided into a training cohort (N = 414) and a test cohort (N = 176). Radiomics features were extracted from the QCT images of the third lumbar vertebra. Minimum redundancy and maximum relevance and least absolute shrinkage and selection operator were used for data dimensional reduction, features selection and radiomics model building. Multivariable logistic regression was applied to construct the combined clinical-radiomic model that incorporated radiomics signatures and clinical characteristics. The performance of the combined clinical-radiomic model was evaluated by the area under the curve of receiver operator characteristic curve (ROC–AUC), accuracy, specificity, sensitivity, positive predictive value, and negative predictive value. Results The patients with osteopenia or osteoporosis were randomly divided into training and test cohort with a ratio of 7:3. Six more predictive radiomics signatures, age, alkaline phosphatase and homocysteine were selected to construct the combined clinical-radiomic model for diagnosis of osteoporosis and osteopenia. The AUC of the combined clinical-radiomic model was 0.96 (95% confidence interval (CI), 0.95 to 0.98) in the training cohort and 0.96 (95% CI 0.92 to 1.00) in the test cohort, which were superior to the clinical model alone (training-AUC = 0.81, test-AUC = 0.79). The calibration curve demonstrated that the radiomics nomogram had good agreement between prediction and observation and decision curve analysis confirmed clinically useful. Conclusions The combined clinical-radiomic model that incorporates the radiomics score and clinical risk factors, can serve as a reliable and powerful tool for discriminating osteoporosis and osteopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
kyut发布了新的文献求助10
1秒前
zhanks完成签到,获得积分20
2秒前
yao发布了新的文献求助10
4秒前
5秒前
6秒前
Samuel发布了新的文献求助10
7秒前
7秒前
星辰大海应助Phoo采纳,获得10
8秒前
烟花应助pleiotropy采纳,获得10
8秒前
9秒前
He完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
10秒前
11秒前
五里霜完成签到,获得积分10
12秒前
藏山归完成签到,获得积分10
12秒前
小草莓完成签到,获得积分10
12秒前
杜文静发布了新的文献求助30
12秒前
17秒前
17秒前
神奇的种子完成签到,获得积分10
18秒前
石大伟完成签到 ,获得积分10
19秒前
20秒前
chuhaner发布了新的文献求助10
21秒前
Sylvia_J完成签到 ,获得积分10
22秒前
龙龙冲发布了新的文献求助10
23秒前
cocolu应助Kitty采纳,获得30
23秒前
积极的绿竹完成签到,获得积分10
25秒前
muxinzx发布了新的文献求助10
25秒前
26秒前
大气愚志关注了科研通微信公众号
26秒前
27秒前
lululu发布了新的文献求助10
28秒前
李健的小迷弟应助雅琳子采纳,获得10
29秒前
Samuel完成签到,获得积分10
29秒前
李健的粉丝团团长应助WS采纳,获得10
29秒前
31秒前
俏皮鸵鸟完成签到,获得积分10
32秒前
方乔杉发布了新的文献求助10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664