清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics

化学 溶剂化 分子动力学 电解质 化学物理 从头算 工作(物理) 锂(药物) 计算化学 热力学 离子 物理化学 有机化学 物理 电极 医学 内分泌学
作者
Feng Wang,Jun Cheng
出处
期刊:Chinese Journal of Structural Chemistry 卷期号:42 (9): 100061-100061 被引量:4
标识
DOI:10.1016/j.cjsc.2023.100061
摘要

Glyme-based electrolytes are of great interest for rechargeable lithium metal batteries due to their high stability, low vapor pressure, and non-flammability. Understanding the solvation structures of these electrolytes at the atomic level will facilitate the design of new electrolytes with novel properties. Recently, classical molecular dynamics (CMD) and ab initio molecular dynamics (AIMD) have been applied to investigate electrolytes with complex solvation structures. On one hand, CMD may not provide reliable results as it requires complex parameterization to ensure the accuracy of the classical force field. On the other hand, the time scale of AIMD is limited by the high cost of ab initio calculations, which causes that solvation structures from AIMD simulations depend on the initial configurations. In order to solve the dilemma, machine learning method is applied to accelerate AIMD, and its time scale can be extended dramatically. In this work, we present a computational study on the solvation structures of triglyme (G3) based electrolytes by using machine learning molecular dynamics (MLMD). Firstly, we investigate the effects of density functionals on the accuracy of machine learning potential (MLP), and find that PBE-D3 shows better accuracy compared to BLYP-D3. Then, the densities of electrolytes with different concentration of LiTFSI are computed with MLMD, which shows good agreement with experiments. By analyzing the solvation structures of 1 ns MLMD trajectories, we found that Li+ prefers to coordinate with a G3 and a TFSI− in equimolar electrolytes. Our work demonstrates the significance of long-time scale MLMD simulations for clarifying the chemistry of non-ideal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhangfu完成签到,获得积分10
7秒前
8秒前
24秒前
40秒前
1分钟前
1分钟前
2分钟前
薏仁完成签到 ,获得积分10
2分钟前
17852573662完成签到,获得积分10
2分钟前
muriel完成签到,获得积分10
3分钟前
3分钟前
4分钟前
4分钟前
qdlsc完成签到,获得积分10
4分钟前
所所应助qdlsc采纳,获得10
4分钟前
4分钟前
qdlsc发布了新的文献求助10
4分钟前
5分钟前
迅速的月光完成签到 ,获得积分10
5分钟前
实力不允许完成签到 ,获得积分10
5分钟前
5分钟前
Sandy完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
6分钟前
爱静静举报秦秦秦求助涉嫌违规
6分钟前
6分钟前
7分钟前
LTJ完成签到,获得积分10
7分钟前
机灵哲瀚完成签到,获得积分10
7分钟前
7分钟前
7分钟前
通科研完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
星辰大海应助科研通管家采纳,获得10
9分钟前
9分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142