Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics

化学 溶剂化 分子动力学 电解质 化学物理 从头算 工作(物理) 锂(药物) 计算化学 热力学 离子 物理化学 有机化学 物理 电极 医学 内分泌学
作者
Feng Wang,Jun Cheng
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:42 (9): 100061-100061 被引量:9
标识
DOI:10.1016/j.cjsc.2023.100061
摘要

Glyme-based electrolytes are of great interest for rechargeable lithium metal batteries due to their high stability, low vapor pressure, and non-flammability. Understanding the solvation structures of these electrolytes at the atomic level will facilitate the design of new electrolytes with novel properties. Recently, classical molecular dynamics (CMD) and ab initio molecular dynamics (AIMD) have been applied to investigate electrolytes with complex solvation structures. On one hand, CMD may not provide reliable results as it requires complex parameterization to ensure the accuracy of the classical force field. On the other hand, the time scale of AIMD is limited by the high cost of ab initio calculations, which causes that solvation structures from AIMD simulations depend on the initial configurations. In order to solve the dilemma, machine learning method is applied to accelerate AIMD, and its time scale can be extended dramatically. In this work, we present a computational study on the solvation structures of triglyme (G3) based electrolytes by using machine learning molecular dynamics (MLMD). Firstly, we investigate the effects of density functionals on the accuracy of machine learning potential (MLP), and find that PBE-D3 shows better accuracy compared to BLYP-D3. Then, the densities of electrolytes with different concentration of LiTFSI are computed with MLMD, which shows good agreement with experiments. By analyzing the solvation structures of 1 ns MLMD trajectories, we found that Li+ prefers to coordinate with a G3 and a TFSI− in equimolar electrolytes. Our work demonstrates the significance of long-time scale MLMD simulations for clarifying the chemistry of non-ideal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
快乐科研发布了新的文献求助10
1秒前
烟花应助荀中道采纳,获得10
1秒前
背后海亦发布了新的文献求助10
2秒前
2秒前
2秒前
科研通AI2S应助不要科研采纳,获得10
3秒前
褚香旋完成签到,获得积分10
3秒前
kiki完成签到,获得积分10
3秒前
星辰大海应助Mr.Su采纳,获得10
3秒前
苏黎世完成签到,获得积分10
4秒前
4秒前
Ava应助AppleDog采纳,获得10
4秒前
5秒前
缓慢瑛发布了新的文献求助10
5秒前
千禧发布了新的文献求助10
6秒前
Novoa完成签到,获得积分10
6秒前
寒天完成签到,获得积分10
6秒前
澤少发布了新的文献求助10
7秒前
小马甲应助快乐科研采纳,获得10
8秒前
8秒前
8秒前
要减肥山槐完成签到,获得积分10
8秒前
jane完成签到 ,获得积分10
8秒前
李健鹏完成签到 ,获得积分10
8秒前
8秒前
afli完成签到 ,获得积分0
8秒前
cadnash发布了新的文献求助10
9秒前
王锋发布了新的文献求助10
9秒前
Maroon5完成签到,获得积分10
9秒前
10秒前
医学小生完成签到 ,获得积分10
10秒前
11秒前
欢欢发布了新的文献求助10
11秒前
12秒前
12秒前
满意凡桃发布了新的文献求助10
13秒前
桂花酒酿完成签到,获得积分10
13秒前
13秒前
自由的聋五完成签到,获得积分20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970172
求助须知:如何正确求助?哪些是违规求助? 3514982
关于积分的说明 11176568
捐赠科研通 3250212
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875702
科研通“疑难数据库(出版商)”最低求助积分说明 805004