Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics

化学 溶剂化 分子动力学 电解质 化学物理 从头算 工作(物理) 锂(药物) 计算化学 热力学 离子 物理化学 有机化学 物理 内分泌学 医学 电极
作者
Feng Wang,Jun Cheng
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:42 (9): 100061-100061 被引量:9
标识
DOI:10.1016/j.cjsc.2023.100061
摘要

Glyme-based electrolytes are of great interest for rechargeable lithium metal batteries due to their high stability, low vapor pressure, and non-flammability. Understanding the solvation structures of these electrolytes at the atomic level will facilitate the design of new electrolytes with novel properties. Recently, classical molecular dynamics (CMD) and ab initio molecular dynamics (AIMD) have been applied to investigate electrolytes with complex solvation structures. On one hand, CMD may not provide reliable results as it requires complex parameterization to ensure the accuracy of the classical force field. On the other hand, the time scale of AIMD is limited by the high cost of ab initio calculations, which causes that solvation structures from AIMD simulations depend on the initial configurations. In order to solve the dilemma, machine learning method is applied to accelerate AIMD, and its time scale can be extended dramatically. In this work, we present a computational study on the solvation structures of triglyme (G3) based electrolytes by using machine learning molecular dynamics (MLMD). Firstly, we investigate the effects of density functionals on the accuracy of machine learning potential (MLP), and find that PBE-D3 shows better accuracy compared to BLYP-D3. Then, the densities of electrolytes with different concentration of LiTFSI are computed with MLMD, which shows good agreement with experiments. By analyzing the solvation structures of 1 ns MLMD trajectories, we found that Li+ prefers to coordinate with a G3 and a TFSI− in equimolar electrolytes. Our work demonstrates the significance of long-time scale MLMD simulations for clarifying the chemistry of non-ideal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木灵完成签到,获得积分10
刚刚
HHHHTTTT完成签到,获得积分10
刚刚
刚刚
桐桐应助Cloud9采纳,获得10
刚刚
醍醐不醒发布了新的文献求助10
1秒前
Sylvia0528发布了新的文献求助10
1秒前
小玉发布了新的文献求助10
1秒前
郭郭郭郭发布了新的文献求助10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
Rondab应助科研通管家采纳,获得10
2秒前
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
人生如梦应助科研通管家采纳,获得10
3秒前
xue完成签到,获得积分10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
水深三英尺完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
CodeCraft应助彩色芷采纳,获得10
4秒前
4秒前
4秒前
111发布了新的文献求助10
4秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974712
求助须知:如何正确求助?哪些是违规求助? 3519159
关于积分的说明 11197254
捐赠科研通 3255257
什么是DOI,文献DOI怎么找? 1797724
邀请新用户注册赠送积分活动 877130
科研通“疑难数据库(出版商)”最低求助积分说明 806132