Understanding the solvation structures of glyme-based electrolytes by machine learning molecular dynamics

化学 溶剂化 分子动力学 电解质 化学物理 从头算 工作(物理) 锂(药物) 计算化学 热力学 离子 物理化学 有机化学 物理 内分泌学 医学 电极
作者
Feng Wang,Jun Cheng
出处
期刊:Chinese Journal of Structural Chemistry [Elsevier BV]
卷期号:42 (9): 100061-100061 被引量:13
标识
DOI:10.1016/j.cjsc.2023.100061
摘要

Glyme-based electrolytes are of great interest for rechargeable lithium metal batteries due to their high stability, low vapor pressure, and non-flammability. Understanding the solvation structures of these electrolytes at the atomic level will facilitate the design of new electrolytes with novel properties. Recently, classical molecular dynamics (CMD) and ab initio molecular dynamics (AIMD) have been applied to investigate electrolytes with complex solvation structures. On one hand, CMD may not provide reliable results as it requires complex parameterization to ensure the accuracy of the classical force field. On the other hand, the time scale of AIMD is limited by the high cost of ab initio calculations, which causes that solvation structures from AIMD simulations depend on the initial configurations. In order to solve the dilemma, machine learning method is applied to accelerate AIMD, and its time scale can be extended dramatically. In this work, we present a computational study on the solvation structures of triglyme (G3) based electrolytes by using machine learning molecular dynamics (MLMD). Firstly, we investigate the effects of density functionals on the accuracy of machine learning potential (MLP), and find that PBE-D3 shows better accuracy compared to BLYP-D3. Then, the densities of electrolytes with different concentration of LiTFSI are computed with MLMD, which shows good agreement with experiments. By analyzing the solvation structures of 1 ns MLMD trajectories, we found that Li+ prefers to coordinate with a G3 and a TFSI− in equimolar electrolytes. Our work demonstrates the significance of long-time scale MLMD simulations for clarifying the chemistry of non-ideal electrolytes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AIO完成签到,获得积分10
刚刚
刚刚
吐个泡泡完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Fsy发布了新的文献求助30
2秒前
科研通AI2S应助ada采纳,获得10
2秒前
高兴123发布了新的文献求助10
3秒前
畅快若剑发布了新的文献求助10
3秒前
温婉的谷菱完成签到,获得积分10
3秒前
OKYT发布了新的文献求助10
3秒前
3秒前
4秒前
独特的鹅完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
Simo发布了新的文献求助10
7秒前
小二郎应助ECHO采纳,获得10
7秒前
椰子完成签到 ,获得积分10
7秒前
iNk应助花花采纳,获得20
8秒前
8秒前
9秒前
五档起步发布了新的文献求助10
9秒前
10秒前
欣慰的小甜瓜完成签到 ,获得积分10
10秒前
兔子发布了新的文献求助10
10秒前
11秒前
xxwyj完成签到,获得积分10
11秒前
Owen应助岳勇震采纳,获得10
12秒前
12秒前
星辰大海应助你好文献采纳,获得10
12秒前
orixero应助Bert采纳,获得10
12秒前
hsss发布了新的文献求助10
12秒前
12秒前
畅快若剑完成签到,获得积分10
12秒前
lzy完成签到,获得积分10
13秒前
lin发布了新的文献求助10
13秒前
浅念发布了新的文献求助10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340559
求助须知:如何正确求助?哪些是违规求助? 4476999
关于积分的说明 13933590
捐赠科研通 4372846
什么是DOI,文献DOI怎么找? 2402602
邀请新用户注册赠送积分活动 1395511
关于科研通互助平台的介绍 1367572