亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Low Transformed Multi-Rank Tensor Completion With Deep Prior Regularization for Multi-Dimensional Image Recovery

矩阵范数 张量(固有定义) 计算机科学 高斯噪声 正规化(语言学) 人工智能 高光谱成像 算法 矩阵完成 高斯分布 数学 模式识别(心理学) 特征向量 纯数学 物理 量子力学
作者
Yao Li,Duo Qiu,Xiongjun Zhang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:9 (5): 1288-1301 被引量:3
标识
DOI:10.1109/tbdata.2023.3254156
摘要

In this article, we study the robust tensor completion problem in three-dimensional image data, where only partial entries are available and the observed tensor is corrupted by Gaussian noise and sparse noise simultaneously. Compared with the existing tensor nuclear norm minimization for the low-rank component, we propose to use the transformed tensor nuclear norm to explore the global low-rankness of the underlying tensor. Moreover, the plug-and-play (PnP) deep prior denoiser is incorporated to preserve the local details of multi-dimensional images. Besides, the tensor $\ell _{1}$ norm is utilized to characterize the sparseness of the sparse noise. A symmetric Gauss-Seidel based alternating direction method of multipliers is designed to solve the resulting model under the PnP framework with deep prior denoiser. Extensive numerical experiments on hyperspectral and multispectral images, videos, color images, and magnetic resonance image datasets are conducted to demonstrate the superior performance of the proposed model in comparison with several state-of-the-art models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
梅荣庆完成签到 ,获得积分10
5秒前
evermore发布了新的文献求助10
6秒前
Jason完成签到 ,获得积分10
7秒前
执着的爆米花完成签到,获得积分10
8秒前
feng发布了新的文献求助10
9秒前
完美世界应助Li采纳,获得10
10秒前
paradox完成签到 ,获得积分10
15秒前
追寻夜香完成签到 ,获得积分10
16秒前
17秒前
科目三应助wang采纳,获得10
20秒前
鲤鱼山人完成签到 ,获得积分10
21秒前
可爱的函函应助azure采纳,获得10
33秒前
guan完成签到,获得积分10
34秒前
evermore发布了新的文献求助10
36秒前
Li发布了新的文献求助10
39秒前
43秒前
124发布了新的文献求助10
47秒前
bkagyin应助酒颜采纳,获得10
49秒前
58秒前
慧木发布了新的文献求助10
59秒前
单薄绿竹完成签到,获得积分10
59秒前
1分钟前
abc完成签到 ,获得积分0
1分钟前
azure发布了新的文献求助10
1分钟前
Jonathan完成签到,获得积分10
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
1分钟前
wang发布了新的文献求助10
1分钟前
精明的月亮完成签到 ,获得积分10
1分钟前
东方诩完成签到,获得积分10
1分钟前
挽星完成签到 ,获得积分10
1分钟前
充电宝应助酷炫的紫山采纳,获得10
1分钟前
汉堡包应助嘟嘟嘟采纳,获得10
1分钟前
1分钟前
Li发布了新的文献求助10
1分钟前
1分钟前
feng完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515585
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514228
捐赠科研通 4545476
什么是DOI,文献DOI怎么找? 2490550
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181