已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

ComBat Harmonization for MRI Radiomics

人工智能 线性判别分析 模式识别(心理学) 计算机科学 人工神经网络 朴素贝叶斯分类器 多层感知器 灰度级 协调 贝叶斯定理 机器学习 贝叶斯概率 支持向量机 图像(数学) 声学 物理
作者
Doris Leithner,Rachel B. Nevin,Peter Gibbs,Michael Weber,Ricardo Otazo,Hebert Alberto Vargas,Marius E. Mayerhoefer
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (9): 697-701 被引量:4
标识
DOI:10.1097/rli.0000000000000970
摘要

The aims of this study were to determine whether ComBat harmonization improves multiclass radiomics-based tissue classification in technically heterogeneous MRI data sets and to compare the performances of 2 ComBat variants.One hundred patients who had undergone T1-weighted 3D gradient echo Dixon MRI (2 scanners/vendors; 50 patients each) were retrospectively included. Volumes of interest (2.5 cm 3 ) were placed in 3 disease-free tissues with visually similar appearance on T1 Dixon water images: liver, spleen, and paraspinal muscle. Gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM) radiomic features were extracted. Tissue classification was performed on pooled data from the 2 centers (1) without harmonization, (2) after ComBat harmonization with empirical Bayes estimation (ComBat-B), and (3) after ComBat harmonization without empirical Bayes estimation (ComBat-NB). Linear discriminant analysis with leave-one-out cross-validation was used to distinguish among the 3 tissue types, using all available radiomic features as input. In addition, a multilayer perceptron neural network with a random 70%:30% split into training and test data sets was used for the same task, but separately for each radiomic feature category.Linear discriminant analysis-based mean tissue classification accuracies were 52.3% for unharmonized, 66.3% for ComBat-B harmonized, and 92.7% for ComBat-NB harmonized data. For multilayer perceptron neural network, mean classification accuracies for unharmonized, ComBat-B-harmonized, and ComBat-NB-harmonized test data were as follows: 46.8%, 55.1%, and 57.5% for GLH; 42.0%, 65.3%, and 71.0% for GLCM; 45.3%, 78.3%, and 78.0% for GLRLM; and 48.1%, 81.1%, and 89.4% for GLSZM. Accuracies were significantly higher for both ComBat-B- and ComBat-NB-harmonized data than for unharmonized data for all feature categories (at P = 0.005, respectively). For GLCM ( P = 0.001) and GLSZM ( P = 0.005), ComBat-NB harmonization provided slightly higher accuracies than ComBat-B harmonization.ComBat harmonization may be useful for multicenter MRI radiomics studies with nonbinary classification tasks. The degree of improvement by ComBat may vary among radiomic feature categories, among classifiers, and among ComBat variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jindui完成签到 ,获得积分10
5秒前
yema完成签到 ,获得积分10
6秒前
8秒前
8秒前
大模型应助IKUN采纳,获得10
8秒前
9秒前
9秒前
10秒前
10秒前
星酒完成签到,获得积分10
11秒前
JimmyY发布了新的文献求助10
15秒前
JimmyY发布了新的文献求助10
15秒前
JimmyY发布了新的文献求助10
15秒前
JimmyY发布了新的文献求助10
15秒前
彭于晏应助跳跃若风采纳,获得10
16秒前
18秒前
20秒前
kyfbrahha完成签到 ,获得积分10
20秒前
luchen发布了新的文献求助10
24秒前
25秒前
逃离地球完成签到 ,获得积分10
28秒前
xybjt完成签到 ,获得积分10
29秒前
1111完成签到 ,获得积分10
31秒前
32秒前
pwy发布了新的文献求助10
32秒前
椿人完成签到 ,获得积分10
32秒前
王王应助strelias采纳,获得10
33秒前
HR112完成签到 ,获得积分10
38秒前
耶格尔完成签到 ,获得积分10
38秒前
潜龙发布了新的文献求助10
41秒前
suzy-123完成签到,获得积分10
41秒前
称心曼安完成签到 ,获得积分10
43秒前
43秒前
46秒前
跳跃若风发布了新的文献求助10
49秒前
丢丢完成签到,获得积分10
52秒前
学术骗子小刚完成签到,获得积分10
55秒前
义气完成签到 ,获得积分10
55秒前
真不错完成签到,获得积分10
55秒前
56秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108052
捐赠科研通 2522527
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602