ComBat Harmonization for MRI Radiomics

人工智能 线性判别分析 模式识别(心理学) 计算机科学 人工神经网络 朴素贝叶斯分类器 多层感知器 灰度级 协调 贝叶斯定理 机器学习 贝叶斯概率 支持向量机 图像(数学) 声学 物理
作者
Doris Leithner,Rachel B. Nevin,Peter Gibbs,Michael Weber,Ricardo Otazo,Hebert Alberto Vargas,Marius E. Mayerhoefer
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:58 (9): 697-701 被引量:8
标识
DOI:10.1097/rli.0000000000000970
摘要

The aims of this study were to determine whether ComBat harmonization improves multiclass radiomics-based tissue classification in technically heterogeneous MRI data sets and to compare the performances of 2 ComBat variants.One hundred patients who had undergone T1-weighted 3D gradient echo Dixon MRI (2 scanners/vendors; 50 patients each) were retrospectively included. Volumes of interest (2.5 cm 3 ) were placed in 3 disease-free tissues with visually similar appearance on T1 Dixon water images: liver, spleen, and paraspinal muscle. Gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM) radiomic features were extracted. Tissue classification was performed on pooled data from the 2 centers (1) without harmonization, (2) after ComBat harmonization with empirical Bayes estimation (ComBat-B), and (3) after ComBat harmonization without empirical Bayes estimation (ComBat-NB). Linear discriminant analysis with leave-one-out cross-validation was used to distinguish among the 3 tissue types, using all available radiomic features as input. In addition, a multilayer perceptron neural network with a random 70%:30% split into training and test data sets was used for the same task, but separately for each radiomic feature category.Linear discriminant analysis-based mean tissue classification accuracies were 52.3% for unharmonized, 66.3% for ComBat-B harmonized, and 92.7% for ComBat-NB harmonized data. For multilayer perceptron neural network, mean classification accuracies for unharmonized, ComBat-B-harmonized, and ComBat-NB-harmonized test data were as follows: 46.8%, 55.1%, and 57.5% for GLH; 42.0%, 65.3%, and 71.0% for GLCM; 45.3%, 78.3%, and 78.0% for GLRLM; and 48.1%, 81.1%, and 89.4% for GLSZM. Accuracies were significantly higher for both ComBat-B- and ComBat-NB-harmonized data than for unharmonized data for all feature categories (at P = 0.005, respectively). For GLCM ( P = 0.001) and GLSZM ( P = 0.005), ComBat-NB harmonization provided slightly higher accuracies than ComBat-B harmonization.ComBat harmonization may be useful for multicenter MRI radiomics studies with nonbinary classification tasks. The degree of improvement by ComBat may vary among radiomic feature categories, among classifiers, and among ComBat variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助WY采纳,获得30
1秒前
CipherSage应助熊尼采纳,获得10
1秒前
2秒前
雅杰关注了科研通微信公众号
2秒前
充电宝应助leo采纳,获得10
3秒前
3秒前
仁爱的依波完成签到,获得积分20
3秒前
hzl发布了新的文献求助10
3秒前
Suyi发布了新的文献求助10
4秒前
4秒前
桐桐应助踏实妙晴采纳,获得10
4秒前
5秒前
5秒前
科研通AI6应助爱笑小笼包采纳,获得10
5秒前
5秒前
方囧完成签到,获得积分10
6秒前
zzdd完成签到,获得积分20
6秒前
科研通AI5应助jingjing采纳,获得30
6秒前
7秒前
小莨完成签到,获得积分10
7秒前
不担心完成签到,获得积分10
7秒前
7秒前
7秒前
尉迟希望应助聪明的采枫采纳,获得10
8秒前
习惯ing完成签到,获得积分10
11秒前
11秒前
nan应助好人采纳,获得10
11秒前
cnulee完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助150
12秒前
梅梅发布了新的文献求助10
13秒前
赘婿应助李李李采纳,获得10
14秒前
大气的翠丝完成签到,获得积分10
15秒前
顺心的雅霜完成签到,获得积分10
16秒前
乐乐应助czx采纳,获得10
16秒前
17秒前
zhang完成签到,获得积分20
17秒前
23发布了新的文献求助30
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074774
求助须知:如何正确求助?哪些是违规求助? 4294788
关于积分的说明 13382331
捐赠科研通 4116380
什么是DOI,文献DOI怎么找? 2254214
邀请新用户注册赠送积分活动 1258791
关于科研通互助平台的介绍 1191687