ComBat Harmonization for MRI Radiomics

人工智能 线性判别分析 模式识别(心理学) 计算机科学 人工神经网络 朴素贝叶斯分类器 多层感知器 灰度级 协调 贝叶斯定理 机器学习 贝叶斯概率 支持向量机 图像(数学) 声学 物理
作者
Doris Leithner,Rachel B. Nevin,Peter Gibbs,Michael Weber,Ricardo Otazo,Hebert Alberto Vargas,Marius E. Mayerhoefer
出处
期刊:Investigative Radiology [Lippincott Williams & Wilkins]
卷期号:58 (9): 697-701 被引量:4
标识
DOI:10.1097/rli.0000000000000970
摘要

The aims of this study were to determine whether ComBat harmonization improves multiclass radiomics-based tissue classification in technically heterogeneous MRI data sets and to compare the performances of 2 ComBat variants.One hundred patients who had undergone T1-weighted 3D gradient echo Dixon MRI (2 scanners/vendors; 50 patients each) were retrospectively included. Volumes of interest (2.5 cm 3 ) were placed in 3 disease-free tissues with visually similar appearance on T1 Dixon water images: liver, spleen, and paraspinal muscle. Gray-level histogram (GLH), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and gray-level size-zone matrix (GLSZM) radiomic features were extracted. Tissue classification was performed on pooled data from the 2 centers (1) without harmonization, (2) after ComBat harmonization with empirical Bayes estimation (ComBat-B), and (3) after ComBat harmonization without empirical Bayes estimation (ComBat-NB). Linear discriminant analysis with leave-one-out cross-validation was used to distinguish among the 3 tissue types, using all available radiomic features as input. In addition, a multilayer perceptron neural network with a random 70%:30% split into training and test data sets was used for the same task, but separately for each radiomic feature category.Linear discriminant analysis-based mean tissue classification accuracies were 52.3% for unharmonized, 66.3% for ComBat-B harmonized, and 92.7% for ComBat-NB harmonized data. For multilayer perceptron neural network, mean classification accuracies for unharmonized, ComBat-B-harmonized, and ComBat-NB-harmonized test data were as follows: 46.8%, 55.1%, and 57.5% for GLH; 42.0%, 65.3%, and 71.0% for GLCM; 45.3%, 78.3%, and 78.0% for GLRLM; and 48.1%, 81.1%, and 89.4% for GLSZM. Accuracies were significantly higher for both ComBat-B- and ComBat-NB-harmonized data than for unharmonized data for all feature categories (at P = 0.005, respectively). For GLCM ( P = 0.001) and GLSZM ( P = 0.005), ComBat-NB harmonization provided slightly higher accuracies than ComBat-B harmonization.ComBat harmonization may be useful for multicenter MRI radiomics studies with nonbinary classification tasks. The degree of improvement by ComBat may vary among radiomic feature categories, among classifiers, and among ComBat variants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助别喝他的酒采纳,获得10
1秒前
1秒前
氿瑛发布了新的文献求助10
1秒前
2秒前
3秒前
陈陈发布了新的文献求助10
3秒前
3秒前
害羞文博完成签到,获得积分10
4秒前
木马不旋转完成签到,获得积分10
4秒前
受伤冰菱完成签到,获得积分10
5秒前
徐京墨完成签到,获得积分10
5秒前
科目三应助JUN采纳,获得10
5秒前
花未开完成签到,获得积分10
5秒前
tanrui完成签到,获得积分10
5秒前
闪闪星星完成签到,获得积分10
6秒前
Profeto应助王川采纳,获得10
6秒前
兴奋的蜡烛完成签到,获得积分10
6秒前
CSHAN发布了新的文献求助10
6秒前
斯文败类应助考马斯靓女采纳,获得10
6秒前
舒心毛衣完成签到,获得积分10
7秒前
luluon完成签到,获得积分10
8秒前
斯文败类应助xr采纳,获得10
8秒前
8秒前
8秒前
8秒前
杜兰特工队完成签到,获得积分10
9秒前
热心市民应助jj采纳,获得20
9秒前
9秒前
赵宝正发布了新的文献求助10
9秒前
111完成签到,获得积分10
10秒前
贝肯妮完成签到,获得积分20
10秒前
10秒前
sunzhuxi发布了新的文献求助10
10秒前
11秒前
11秒前
彭于彦祖应助无情的骁采纳,获得30
12秒前
剑影发布了新的文献求助10
12秒前
12秒前
13秒前
wnan_07发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406