Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小可爱123456完成签到,获得积分10
刚刚
咎如天发布了新的文献求助10
1秒前
FashionBoy应助oppozhuimeng采纳,获得10
2秒前
Wanying_Diao完成签到,获得积分10
2秒前
3秒前
核桃nut完成签到,获得积分10
3秒前
神内打工人完成签到 ,获得积分10
3秒前
单纯的爆米花完成签到,获得积分10
3秒前
甜甜圈688完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
复杂黑夜发布了新的文献求助10
4秒前
阿强哥20241101完成签到,获得积分10
4秒前
帅气的机器猫完成签到 ,获得积分10
4秒前
Lemenchichi完成签到,获得积分10
5秒前
polymer完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
彩虹糖完成签到,获得积分10
7秒前
辛巴先生完成签到,获得积分10
7秒前
8秒前
孤独的问凝完成签到,获得积分10
9秒前
爱吃香菜的哆啦A梦完成签到,获得积分10
9秒前
Shuey完成签到,获得积分10
9秒前
笨笨的外套完成签到,获得积分10
10秒前
洛城l完成签到,获得积分10
10秒前
如梦如画完成签到,获得积分10
10秒前
文艺从彤完成签到,获得积分10
11秒前
辛勤安梦完成签到,获得积分10
11秒前
阿白完成签到,获得积分10
12秒前
HF完成签到,获得积分10
12秒前
七小七完成签到 ,获得积分10
12秒前
天行马发布了新的文献求助10
13秒前
Z.Z完成签到 ,获得积分10
13秒前
13秒前
薛强完成签到,获得积分10
13秒前
Li完成签到,获得积分10
13秒前
852应助茹茹采纳,获得10
14秒前
冷傲的山菡完成签到,获得积分10
14秒前
啦啦啦完成签到,获得积分10
14秒前
yyy完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658690
求助须知:如何正确求助?哪些是违规求助? 4823706
关于积分的说明 15082374
捐赠科研通 4817237
什么是DOI,文献DOI怎么找? 2578048
邀请新用户注册赠送积分活动 1532799
关于科研通互助平台的介绍 1491532