Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠双双完成签到,获得积分10
刚刚
1秒前
齐天大圣关注了科研通微信公众号
2秒前
coffee发布了新的文献求助10
2秒前
panana发布了新的文献求助10
2秒前
哩哩发布了新的文献求助10
2秒前
4秒前
4秒前
916应助美好的秋烟采纳,获得10
4秒前
ovo完成签到,获得积分10
5秒前
6秒前
zzzz完成签到,获得积分10
6秒前
我的白起是国服完成签到 ,获得积分10
6秒前
复杂项链发布了新的文献求助10
6秒前
思源应助小白采纳,获得10
6秒前
郑森友完成签到,获得积分10
7秒前
钼yanghua完成签到,获得积分20
8秒前
xmf完成签到,获得积分10
8秒前
8秒前
QQ完成签到 ,获得积分10
8秒前
8秒前
小凯同学完成签到,获得积分10
8秒前
Maestro_S发布了新的文献求助10
9秒前
哦哦哦完成签到 ,获得积分10
9秒前
9秒前
超级的妙晴完成签到 ,获得积分10
9秒前
潇洒完成签到,获得积分10
9秒前
笛子完成签到,获得积分10
10秒前
一块小白糖完成签到,获得积分10
11秒前
小玉发布了新的文献求助10
11秒前
打打应助大萌采纳,获得10
11秒前
跳跳熊完成签到,获得积分10
12秒前
13秒前
复杂项链完成签到,获得积分10
13秒前
toki完成签到,获得积分10
13秒前
稻草完成签到,获得积分10
13秒前
李故完成签到,获得积分10
13秒前
xff关闭了xff文献求助
14秒前
完美世界应助乌拉挂机采纳,获得10
14秒前
哩哩完成签到,获得积分20
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950088
求助须知:如何正确求助?哪些是违规求助? 3495545
关于积分的说明 11077625
捐赠科研通 3226040
什么是DOI,文献DOI怎么找? 1783457
邀请新用户注册赠送积分活动 867687
科研通“疑难数据库(出版商)”最低求助积分说明 800874