Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的人生完成签到,获得积分10
3秒前
brianzk1989完成签到,获得积分10
4秒前
郝宝真发布了新的文献求助10
5秒前
6秒前
DY完成签到,获得积分10
6秒前
fff完成签到 ,获得积分10
7秒前
南瓜气气完成签到,获得积分10
11秒前
科研通AI2S应助Jj采纳,获得10
12秒前
科研通AI2S应助kkk采纳,获得10
12秒前
Alanni完成签到 ,获得积分10
12秒前
14秒前
lerrygg发布了新的文献求助20
15秒前
15秒前
16秒前
糊涂的凡松完成签到,获得积分10
16秒前
霸气的数据线完成签到,获得积分10
17秒前
17秒前
yayaya应助超级白昼采纳,获得10
17秒前
Gen_cexon发布了新的文献求助10
20秒前
20秒前
Firenze发布了新的文献求助10
21秒前
搜集达人应助T拐拐采纳,获得10
21秒前
21秒前
liuttinn完成签到,获得积分10
23秒前
23秒前
不可思宇完成签到,获得积分10
24秒前
害羞的盼海完成签到,获得积分10
24秒前
妄语完成签到 ,获得积分10
25秒前
Jj发布了新的文献求助10
25秒前
26秒前
xzy998应助超级白昼采纳,获得10
27秒前
28秒前
29秒前
31秒前
T拐拐发布了新的文献求助10
32秒前
听话的幼荷完成签到,获得积分10
35秒前
36秒前
37秒前
可爱的函函应助穿堂风采纳,获得10
38秒前
开朗白开水完成签到 ,获得积分10
38秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162907
求助须知:如何正确求助?哪些是违规求助? 2813960
关于积分的说明 7902455
捐赠科研通 2473553
什么是DOI,文献DOI怎么找? 1316888
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187