Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lipppfff完成签到,获得积分10
1秒前
酷酷的半凡完成签到,获得积分10
1秒前
111完成签到,获得积分10
1秒前
DiJia发布了新的文献求助10
1秒前
supering11完成签到,获得积分10
2秒前
2秒前
uniphoton完成签到,获得积分10
2秒前
xnzll发布了新的文献求助10
2秒前
2秒前
认真的纸飞机完成签到 ,获得积分10
3秒前
sfsfes完成签到 ,获得积分10
3秒前
3秒前
峥嵘发布了新的文献求助10
4秒前
Lucas应助勤奋的绪采纳,获得10
4秒前
5秒前
6秒前
yaaaaajie完成签到,获得积分10
6秒前
钮祜禄如懿完成签到,获得积分10
6秒前
开朗醉波完成签到,获得积分10
6秒前
6秒前
LLL发布了新的文献求助10
6秒前
小鱼鱼Fish完成签到,获得积分10
6秒前
爆米花应助cheong采纳,获得10
7秒前
7秒前
小点点发布了新的文献求助10
8秒前
Davidjun完成签到,获得积分10
8秒前
感性的开山完成签到 ,获得积分10
8秒前
怪杰发布了新的文献求助10
9秒前
nn完成签到,获得积分10
9秒前
9秒前
Kuhaku完成签到,获得积分10
9秒前
abc123发布了新的文献求助10
10秒前
dcx完成签到,获得积分10
10秒前
ljgsjg完成签到,获得积分10
10秒前
月亮啊完成签到 ,获得积分10
10秒前
中草药完成签到,获得积分10
11秒前
minsu发布了新的文献求助10
11秒前
一枚研究僧完成签到,获得积分0
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5707596
求助须知:如何正确求助?哪些是违规求助? 5184803
关于积分的说明 15250947
捐赠科研通 4860890
什么是DOI,文献DOI怎么找? 2608987
邀请新用户注册赠送积分活动 1559779
关于科研通互助平台的介绍 1517558