已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
好哇关注了科研通微信公众号
1秒前
酷酷念云发布了新的文献求助10
3秒前
4秒前
清风发布了新的文献求助10
5秒前
5秒前
机灵的忆梅完成签到 ,获得积分10
6秒前
6秒前
我要向阳而生完成签到 ,获得积分10
6秒前
芽芽鸭完成签到,获得积分10
8秒前
8秒前
9秒前
10秒前
芽芽鸭发布了新的文献求助10
11秒前
敏感的雨寒关注了科研通微信公众号
11秒前
mm发布了新的文献求助10
11秒前
11秒前
11秒前
easy发布了新的文献求助20
11秒前
左鞅发布了新的文献求助10
13秒前
14秒前
14秒前
xio完成签到,获得积分20
15秒前
15秒前
Sylvie完成签到,获得积分10
15秒前
白板发布了新的文献求助10
16秒前
阿哈发布了新的文献求助10
16秒前
星熠完成签到,获得积分10
17秒前
closer完成签到 ,获得积分10
17秒前
打打应助芽芽鸭采纳,获得10
18秒前
charles发布了新的文献求助10
20秒前
20秒前
CHEN完成签到 ,获得积分10
20秒前
aaa发布了新的文献求助10
20秒前
xio发布了新的文献求助10
21秒前
菜鸟队长完成签到 ,获得积分10
22秒前
22秒前
鳗鱼涵易发布了新的文献求助10
22秒前
23秒前
aaaabc完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919