Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6.1应助lee采纳,获得10
2秒前
李大白完成签到 ,获得积分10
3秒前
3秒前
拼搏的小鱼完成签到 ,获得积分10
4秒前
vv发布了新的文献求助10
7秒前
鹿过完成签到,获得积分10
11秒前
11秒前
梁寒发布了新的文献求助10
12秒前
12秒前
CipherSage应助大力的图图采纳,获得10
13秒前
yyyyy发布了新的文献求助30
15秒前
16秒前
Edenmy完成签到,获得积分10
17秒前
hyyyh发布了新的文献求助10
18秒前
eric完成签到,获得积分10
20秒前
21秒前
小马甲应助糊涂的萍采纳,获得10
21秒前
Ytion发布了新的文献求助10
21秒前
Leeee完成签到,获得积分10
22秒前
maox1aoxin完成签到,获得积分0
23秒前
Jing完成签到 ,获得积分10
24秒前
yolo完成签到 ,获得积分10
25秒前
狂奔的酸笋完成签到,获得积分10
26秒前
华仔应助ven采纳,获得10
26秒前
优雅尔芙完成签到 ,获得积分10
27秒前
碧蓝平露发布了新的文献求助10
27秒前
木悠发布了新的文献求助10
28秒前
28秒前
可靠幻然完成签到 ,获得积分10
28秒前
30秒前
30秒前
专注的尔云完成签到,获得积分10
31秒前
34秒前
咻咻发布了新的文献求助10
35秒前
可爱的函函应助tp采纳,获得10
36秒前
婷123发布了新的文献求助10
37秒前
今后应助Seagull采纳,获得10
39秒前
Twonej应助Maestro_S采纳,获得50
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872925
求助须知:如何正确求助?哪些是违规求助? 6493788
关于积分的说明 15670196
捐赠科研通 4990329
什么是DOI,文献DOI怎么找? 2690207
邀请新用户注册赠送积分活动 1632742
关于科研通互助平台的介绍 1590623