Scattering-Point-Guided RPN for Oriented Ship Detection in SAR Images

计算机科学 合成孔径雷达 人工智能 探测器 散射 目标检测 卫星 深度学习 遥感 计算机视觉 模式识别(心理学) 电信 地质学 物理 天文 光学
作者
Yipeng Zhang,Dongdong Lu,Xiaolan Qiu,Fei Li
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:15 (5): 1411-1411 被引量:4
标识
DOI:10.3390/rs15051411
摘要

Ship detection in synthetic aperture radar (SAR) images has attracted widespread attention due to its significance and challenges. In recent years, numerous detectors based on deep learning have achieved good performance in the field of SAR ship detection. However, ship targets of the same type always have various representations in SAR images under different imaging conditions, while different types of ships may have a high degree of similarity, which considerably complicates SAR target recognition. Meanwhile, the ship target in the SAR image is also obscured by background and noise. To address these issues, this paper proposes a novel oriented ship detection method in SAR images named SPG-OSD. First, we propose an oriented two-stage detection module based on the scattering characteristics. Second, to reduce false alarms and missing ships, we improve the performance of the network by incorporating SAR scattering characteristics in the first stage of the detector. A scattering-point-guided region proposal network (RPN) is designed to predict possible key scattering points and make the regression and classification stages of RPN increase attention to the vicinity of key scattering points and reduce attention to background and noise. Third, supervised contrastive learning is introduced to alleviate the problem of minute discrepancies among SAR object classes. Region-of-Interest (RoI) contrastive loss is proposed to enhance inter-class distinction and diminish intra-class variance. Extensive experiments are conducted on the SAR ship detection dataset from the Gaofen-3 satellite, and the experimental results demonstrate the effectiveness of SPG-OSD and show that our method achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西门博超发布了新的文献求助10
刚刚
吴海娇完成签到,获得积分10
1秒前
迷人小张完成签到,获得积分20
1秒前
yan发布了新的文献求助10
1秒前
科研通AI5应助JV采纳,获得10
1秒前
等待帆布鞋完成签到 ,获得积分10
2秒前
果果发布了新的文献求助30
2秒前
2秒前
葡小小发布了新的文献求助10
3秒前
ding应助pincoudegushi采纳,获得10
3秒前
刘成完成签到,获得积分10
3秒前
4秒前
4秒前
马吉克完成签到 ,获得积分10
4秒前
复成发布了新的文献求助10
4秒前
zzww发布了新的文献求助10
4秒前
4秒前
5秒前
哭泣的海莲完成签到,获得积分10
5秒前
yj1506837246发布了新的文献求助10
5秒前
浮游应助彭于晏采纳,获得10
6秒前
筋筋子发布了新的文献求助10
6秒前
廿叁发布了新的文献求助20
6秒前
英姑应助asder采纳,获得10
7秒前
隐形曼青应助文艺冰露采纳,获得10
7秒前
8秒前
爱吃脆脆鲨完成签到 ,获得积分10
8秒前
gao发布了新的文献求助10
9秒前
TTT发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
0128lun发布了新的文献求助10
10秒前
史一豆完成签到 ,获得积分10
10秒前
11秒前
11秒前
11秒前
真实的煎饼完成签到,获得积分10
11秒前
科研通AI5应助吴垚采纳,获得10
12秒前
Lucas应助甜甜若冰采纳,获得20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705