伤口愈合
壳聚糖
化学
聚乙烯吡咯烷酮
甲基丙烯酸酯
生物膜
铵
自愈水凝胶
炎症
金黄色葡萄球菌
聚合
高分子化学
微生物学
细菌
生物化学
聚合物
有机化学
免疫学
医学
生物
遗传学
作者
Xia Xu,Yanbo Zeng,Zheng Chen,Yu Yang,Haibin Wang,Xuhua Lu,Jiulong Zhao,Shige Wang
标识
DOI:10.1016/j.ijbiomac.2023.123847
摘要
In this study, a composite hydrogel (QMPD hydrogel) composed of methacrylate anhydride (MA) grafted quaternary ammonium chitosan (QCS-MA), polyvinylpyrrolidone (PVP), and dopamine (DA) was designed for the sequential wound inflammation elimination, infection inhibition, and wound healing. The QMPD hydrogel formation was initiated by the ultraviolet light-triggered polymerization of QCS-MA. Furthermore, hydrogen bonds, electrostatic interactions, and "π-π" stacking between QCS-MA, PVP, and DA were involved in the hydrogel formation. In this hydrogel, the quaternary ammonium groups of quaternary ammonium chitosan and the photothermal conversion of polydopamine are capable of killing bacteria on wounds, which showed the bacteriostatic ratios of 85.6 % and 92.5 % toward Escherichia coli and Staphylococcus aureus, respectively. Moreover, the oxidation of DA sufficiently scavenged free radicals and introduced the QMPD hydrogel with good anti-oxidant and anti-inflammatory abilities. Together with the extracellular matrix-mimic tropical structure, the QMPD hydrogel significantly promoted the wound management of mice. Therefore, the QMPD hydrogel is expected to provide a new method for the design of wound healing dressings.
科研通智能强力驱动
Strongly Powered by AbleSci AI