Deep Learning–Accelerated Liver Diffusion-Weighted Imaging

医学 核医学 深度学习 扩散 物理 人工智能 计算机科学 热力学
作者
Dong Hwan Kim,Bohyun Kim,Hyun-Soo Lee,Thomas Benkert,Hokun Kim,Woo Hee Choi,Soon Nam Oh,Sung Eun Rha
出处
期刊:Investigative Radiology [Ovid Technologies (Wolters Kluwer)]
卷期号:58 (11): 782-790 被引量:6
标识
DOI:10.1097/rli.0000000000000988
摘要

Objectives Deep learning–reconstructed diffusion-weighted imaging (DL-DWI) is an emerging promising time-efficient method for liver evaluation, but analyses regarding different motion compensation strategies are lacking. This study evaluated the qualitative and quantitative features, sensitivity for focal lesion detection, and scan time of free-breathing (FB) DL-DWI and respiratory-triggered (RT) DL-DWI compared with RT conventional DWI (C-DWI) in the liver and a phantom. Materials and Methods Eighty-six patients indicated for liver MRI underwent RT C-DWI, FB DL-DWI, and RT DL-DWI with matching imaging parameters other than the parallel imaging factor and number of averages. Two abdominal radiologists independently assessed qualitative features (structural sharpness, image noise, artifacts, and overall image quality) using a 5-point scale. The signal-to-noise ratio (SNR) along with the apparent diffusion coefficient (ADC) value and its standard deviation (SD) were measured in the liver parenchyma and a dedicated diffusion phantom. For focal lesions, per-lesion sensitivity, conspicuity score, SNR, and ADC value were evaluated. Wilcoxon signed rank test and repeated-measures analysis of variance with post hoc test revealed the difference in DWI sequences. Results Compared with RT C-DWI, the scan times for FB DL-DWI and RT DL-DWI were reduced by 61.5% and 23.9%, respectively, with statistically significant differences between all 3 pairs (all P 's < 0.001). Respiratory-triggered DL-DWI showed a significantly sharper liver margin, less image noise, and more minor cardiac motion artifact compared with RT C-DWI (all P 's < 0.001), whereas FB DL-DWI showed more blurred liver margins and poorer intrahepatic vessels demarcation than RT C-DWI. Both FB- and RT DL-DWI showed significantly higher SNRs than RT C-DWI in all liver segments (all P 's < 0.001). There was no significant difference in overall ADC values across DWI sequences in the patient or phantom, with the highest value recorded in the left liver dome by RT C-DWI. The overall SD was significantly lower with FB DL-DWI and RT DL-DWI than RT C-DWI (all P 's ≤ 0.003). Respiratory-triggered DL-DWI showed a similar per-lesion sensitivity (0.96; 95% confidence interval, 0.90–0.99) and conspicuity score to those of RT C-DWI and significantly higher SNR and contrast-to-noise ratio values ( P ≤ 0.006). The per-lesion sensitivity of FB DL-DWI (0.91; 95% confidence interval, 0.85–0.95) was significantly lower than that of RT C-DWI ( P = 0.001), with a significantly lower conspicuity score. Conclusions Compared with RT C-DWI, RT DL-DWI demonstrated superior SNR, comparable sensitivity for focal hepatic lesions, and reduced acquisition time, making it a suitable alternative to RT C-DWI. Despite FB DL-DWI's weakness in motion-related challenges, further refinement could potentiate FB DL-DWI in the context of abbreviated screening protocols, where time efficiency is a high priority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾条发布了新的文献求助10
1秒前
1秒前
Arloong发布了新的文献求助10
2秒前
3秒前
3秒前
鱼海寻俞完成签到,获得积分10
3秒前
小超发布了新的文献求助10
3秒前
我要发sci完成签到,获得积分10
4秒前
4秒前
科研通AI2S应助梁羽生采纳,获得10
7秒前
辰炀发布了新的文献求助10
7秒前
8秒前
Comet完成签到,获得积分10
8秒前
难过冷玉完成签到,获得积分10
8秒前
传奇3应助落后语山采纳,获得10
9秒前
feilong完成签到,获得积分10
10秒前
Lu完成签到,获得积分10
10秒前
shanghe发布了新的文献求助10
11秒前
11秒前
12秒前
阳光冰颜完成签到 ,获得积分10
12秒前
彭珊驳回了Ava应助
13秒前
隐形曼青应助汪哈七采纳,获得10
13秒前
雨巷关注了科研通微信公众号
14秒前
15秒前
xyh完成签到,获得积分10
16秒前
17秒前
行宇发布了新的文献求助10
17秒前
苏卿应助文静采纳,获得30
18秒前
shawn发布了新的文献求助10
18秒前
18秒前
留胡子的明轩完成签到,获得积分10
19秒前
大楊完成签到,获得积分10
19秒前
宁宁发布了新的文献求助10
20秒前
大个应助mao采纳,获得10
20秒前
李健的小迷弟应助Madge采纳,获得10
21秒前
李健应助雪艇采纳,获得10
22秒前
23秒前
方半仙完成签到,获得积分10
23秒前
英姑应助留胡子的明轩采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156090
求助须知:如何正确求助?哪些是违规求助? 2807496
关于积分的说明 7873356
捐赠科研通 2465814
什么是DOI,文献DOI怎么找? 1312446
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905