已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Trust and deception with high stakes: Evidence from the friend or foe dataset

欺骗 概化理论 心理学 社会心理学 即时性 吸引力 认知心理学 发展心理学 精神分析 认识论 哲学
作者
Xunyu Chen,Xinran Wang,Lee Spitzley,Jay F. Nunamaker
出处
期刊:Decision Support Systems [Elsevier]
卷期号:173: 113997-113997 被引量:1
标识
DOI:10.1016/j.dss.2023.113997
摘要

Many social interactions rely on the premise of mutual trust, but deception violates trust and poses risk. Empirically examining trust and deception, particularly in high-stakes situations, is challenging but essential for improving the research realism and generalizability. To address this difficulty, we study trusting and deceptive behaviors in a high-stakes situation by using a novel dataset created from an American game show, Friend or Foe (FoF). In the show, a contestant's reward was determined through a trust game modified from the prisoner's dilemma. We explore how numerous human behaviors including facial expressions, gaze, head pose, body motion, language, and socio-demographic attributes, were related to a contestant's trusting or deceptive decision. Using a data-driven approach, we find that the deceivers' (contestants who chose Foe) behavior featured a neutralized face, negative facial emotions, enhanced upper body motion, and language with a lower sense of immediacy and agreeableness. The contestants who chose to trust (chose Friend) exhibited opposite behavioral patterns. Socio-demographic factors such as age, height, and facial attractiveness were also associated with a contestant's choice. Combining multimodal information, machine learning classifiers could predict the contestant's choice with an accuracy about 25% greater than earlier reported human accuracy. We contribute to both trust and deception literature by examining the generalizability of trusting and deceptive behaviors to a new high-stakes scenario. We also add to the decision support literature by showing the superior predictive performances of combining behavioral and socio-demographic features. Furthermore, we contribute to the academic community by introducing the FoF dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白青完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
星辰大海发布了新的文献求助10
4秒前
真金小子完成签到 ,获得积分10
4秒前
4秒前
哈哈哈发布了新的文献求助10
7秒前
易吴鱼发布了新的文献求助10
7秒前
胡不言发布了新的文献求助10
10秒前
wab完成签到,获得积分0
10秒前
11秒前
11秒前
12秒前
12秒前
爱听歌的万言完成签到,获得积分10
14秒前
拓跋涵易发布了新的文献求助10
15秒前
豆子发布了新的文献求助10
16秒前
zqy发布了新的文献求助10
18秒前
18秒前
所所应助唐亿倩采纳,获得10
18秒前
19秒前
小蘑菇应助小郭不洗锅采纳,获得10
20秒前
MRzzzzz发布了新的文献求助10
21秒前
专注鸣凤发布了新的文献求助10
23秒前
23秒前
豆子完成签到,获得积分10
24秒前
饱满的琦完成签到 ,获得积分10
25秒前
大模型应助专注鸣凤采纳,获得10
27秒前
tong完成签到,获得积分10
27秒前
赘婿应助清脆的芯采纳,获得10
30秒前
31秒前
田様应助颜沛文采纳,获得10
31秒前
33秒前
生动丹珍发布了新的文献求助10
33秒前
34秒前
MRzzzzz完成签到,获得积分10
35秒前
ppzy发布了新的文献求助30
35秒前
兴奋元冬发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801512
关于积分的说明 7845255
捐赠科研通 2459095
什么是DOI,文献DOI怎么找? 1308964
科研通“疑难数据库(出版商)”最低求助积分说明 628618
版权声明 601727