AI-Accelerated Design of Targeted Covalent Inhibitors for SARS-CoV-2

费斯特共振能量转移 共价键 虚拟筛选 弹头 药物发现 化学 计算生物学 组合化学 计算机科学 工作流程 管道(软件) 纳米技术 生物物理学 生物化学 荧光 材料科学 生物 物理 有机化学 量子力学 数据库 核物理学 程序设计语言
作者
Rajendra P. Joshi,Katherine Schultz,Jesse Wilson,Agustin Kruel,Rohith Varikoti,Chathuri J. Kombala,Daniel W. Kneller,Stephanie Galanie,G.N. Phillips,Qiu Zhang,Leighton Coates,Jyothi Parvathareddy,Surekha Surendranathan,Ying Kong,Austin Clyde,Arvind Ramanathan,Colleen B. Jonsson,Kristoffer Brandvold,Mowei Zhou,Martha S. Head
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:63 (5): 1438-1453 被引量:15
标识
DOI:10.1021/acs.jcim.2c01377
摘要

Direct-acting antivirals for the treatment of the COVID-19 pandemic caused by the SARS-CoV-2 virus are needed to complement vaccination efforts. Given the ongoing emergence of new variants, automated experimentation, and active learning based fast workflows for antiviral lead discovery remain critical to our ability to address the pandemic's evolution in a timely manner. While several such pipelines have been introduced to discover candidates with noncovalent interactions with the main protease (Mpro), here we developed a closed-loop artificial intelligence pipeline to design electrophilic warhead-based covalent candidates. This work introduces a deep learning-assisted automated computational workflow to introduce linkers and an electrophilic "warhead" to design covalent candidates and incorporates cutting-edge experimental techniques for validation. Using this process, promising candidates in the library were screened, and several potential hits were identified and tested experimentally using native mass spectrometry and fluorescence resonance energy transfer (FRET)-based screening assays. We identified four chloroacetamide-based covalent inhibitors of Mpro with micromolar affinities (KI of 5.27 μM) using our pipeline. Experimentally resolved binding modes for each compound were determined using room-temperature X-ray crystallography, which is consistent with the predicted poses. The induced conformational changes based on molecular dynamics simulations further suggest that the dynamics may be an important factor to further improve selectivity, thereby effectively lowering KI and reducing toxicity. These results demonstrate the utility of our modular and data-driven approach for potent and selective covalent inhibitor discovery and provide a platform to apply it to other emerging targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
3秒前
4秒前
budingman发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
眼睛大的念桃完成签到,获得积分10
6秒前
7秒前
面包完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
轩辕白竹完成签到,获得积分10
8秒前
创不可贴发布了新的文献求助10
8秒前
一二三完成签到 ,获得积分10
8秒前
9秒前
9秒前
10秒前
隐形曼青应助铮铮铁骨采纳,获得10
10秒前
轩辕山槐完成签到,获得积分10
11秒前
单纯易真发布了新的文献求助10
11秒前
12秒前
12秒前
科研狗应助典雅的面包采纳,获得30
13秒前
务实映之完成签到,获得积分10
13秒前
13秒前
科研通AI6.1应助Frank采纳,获得10
13秒前
katata完成签到 ,获得积分10
14秒前
隐形曼青应助wailiii采纳,获得30
14秒前
科研通AI6.1应助wailiii采纳,获得10
15秒前
萌酱发布了新的文献求助10
16秒前
16秒前
17秒前
97_完成签到,获得积分10
18秒前
18秒前
Foch发布了新的文献求助10
19秒前
19秒前
PJY发布了新的文献求助10
19秒前
kai发布了新的文献求助10
20秒前
CATH完成签到 ,获得积分10
21秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826235
求助须知:如何正确求助?哪些是违规求助? 6014209
关于积分的说明 15568922
捐赠科研通 4946518
什么是DOI,文献DOI怎么找? 2664888
邀请新用户注册赠送积分活动 1610627
关于科研通互助平台的介绍 1565616