数字图像相关
残余应力
流离失所(心理学)
钻探
钻孔法
沉积(地质)
材料科学
残余物
热膨胀
领域(数学)
深孔钻探
能量(信号处理)
激光器
位移场
结构工程
光学
地质学
计算机科学
复合材料
冶金
工程类
算法
有限元法
物理
数学
心理治疗师
心理学
古生物学
量子力学
沉积物
纯数学
作者
E. Polyzos,Hendrik Pulju,Peter Mäckel,Michaël Hinderdael,Julien Ertveldt,Danny Van Hemelrijck,Lincy Pyl
出处
期刊:Materials
[MDPI AG]
日期:2023-02-08
卷期号:16 (4): 1444-1444
被引量:3
摘要
This article presents a novel approach for assessing the effects of residual stresses in laser-directed energy deposition (L-DED). The approach focuses on exploiting the potential of rapidly growing tools such as machine learning and polynomial chaos expansion for handling full-field data for measurements and predictions. In particular, the thermal expansion coefficient of thin-wall L-DED steel specimens is measured and then used to predict the displacement fields around the drilling hole in incremental hole-drilling tests. The incremental hole-drilling test is performed on cubic L-DED steel specimens and the displacement fields are visualized using a 3D micro-digital image correlation setup. A good agreement is achieved between predictions and experimental measurements.
科研通智能强力驱动
Strongly Powered by AbleSci AI