蔗渣
废水
制浆造纸工业
废物管理
生物反应器
环境科学
膜生物反应器
化学
工程类
有机化学
作者
Sourbh Dhiman,Malini Balakrishnan,Vincenzo Naddeo,Naved Ahsan
标识
DOI:10.1007/s11270-023-06173-3
摘要
This study assesses the performance of waste sugarcane bagasse ash (SBA)-based ceramic membrane in anaerobic membrane bioreactor (AnMBR) treating low-strength wastewater. The AnMBR was operated in sequential batch reactor (SBR) mode at hydraulic retention time (HRT) of 24 h, 18 h, and 10 h to understand the effect on organics removal and membrane performance. Feast-famine conditions were also examined to evaluate system performance under variable influent loadings. An average removal of >90% chemical oxygen demand (COD) was obtained at each HRT and starvation periods up to 96 days did not significantly affect removal efficiency. However, feast-famine conditions affected extracellular polymeric substances (EPS) production and consequently the membrane fouling. EPS production was high (135 mg/g MLVSS) when the system was restarted at 18 h HRT after shutdown (96 days) with corresponding high transmembrane pressure (TMP) build-up; however, the EPS content stabilized at ~60-80 mg/g MLVSS after a week of operation. Similar phenomenon of high EPS and high TMP was experienced after other shutdowns (94 and 48 days) as well. Permeate flux was 8.8±0.3, 11.2±0.1 and 18.4±3.4 L/m2 h at 24 h, 18 h and 10 h HRT, respectively. Filtration-relaxation (4 min - 1 min) and backflush (up to 4 times operating flux) helped control fouling rate. Surface deposits (that significantly attributed to fouling) could be effectively removed by physical cleaning, resulting in nearly complete flux recovery. Overall, SBR-AnMBR system equipped with waste-based ceramic membrane appears promising for treatment of low-strength wastewater with disruptions in feeding.The online version contains supplementary material available at 10.1007/s11270-023-06173-3.
科研通智能强力驱动
Strongly Powered by AbleSci AI