Interpretable hardness prediction of high-entropy alloys through ensemble learning

可解释性 集成学习 人工智能 集合预报 机器学习 计算机科学 材料科学 堆积 化学 有机化学
作者
Yifan Zhang,Wei Ren,Weili Wang,Nan Li,Yuxin Zhang,Xuemei Li,Wenhui Li
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:945: 169329-169329 被引量:31
标识
DOI:10.1016/j.jallcom.2023.169329
摘要

With the development of artificial intelligence, machine learning has a wide range of applications in the field of materials. The sparsity of data on the mechanical properties of high-entropy alloys makes it difficult to balance between the generalizability and interpretability in data-driven predictive models of material properties. A machine learning model was established based on the HEA hardness data of the Al-Co-Cr-Cu-Fe-Ni system, and several modeling features were screened out through a three-step parallel approach. Model ensemble was performed for RandomForest, XGBoost, LightGBM and CatBoost using the stacking ensemble algorithm, and the coefficient of determination(R2) of the model reached 0.93 after a ten-fold cross-validation. The ensemble learning is stable and accurate for predicting HEA hardness value, and is experimentally verified. The model and selected features can also be applied to different HEA systems as well as low hardness CrFeNi MEA. In addition, we further explained the large prediction deviation of MEA in the high hardness region. Further, the effects of HEA composition and phase formation on the hardness of HEA were qualitatively analyzed based on interpretable tools like SHAP values as well as PDP/ICE plots, respectively. Finally, the model not only has the generalization of ensemble learning, but also has certain interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助YYJ采纳,获得10
1秒前
2秒前
2秒前
严俊东发布了新的文献求助10
3秒前
zengyiyong发布了新的文献求助10
3秒前
李爱国应助hahaha采纳,获得10
4秒前
4秒前
JiaqiDijon发布了新的文献求助10
4秒前
toast发布了新的文献求助10
6秒前
6秒前
大模型应助Cistone采纳,获得10
7秒前
7秒前
9秒前
he完成签到 ,获得积分10
13秒前
15秒前
斯文败类应助现代啤酒采纳,获得10
15秒前
胡英宇完成签到,获得积分10
16秒前
至此今生发布了新的文献求助30
17秒前
小二郎应助大胆的彩虹采纳,获得10
18秒前
风之旅人发布了新的文献求助10
19秒前
19秒前
21秒前
老肖应助胡英宇采纳,获得10
22秒前
丘比特应助asd采纳,获得10
24秒前
25秒前
26秒前
友好的季节完成签到,获得积分10
26秒前
开朗的戎发布了新的文献求助10
29秒前
YangSihan发布了新的文献求助10
29秒前
bkagyin应助Selvig采纳,获得10
32秒前
季乔发布了新的文献求助20
33秒前
34秒前
35秒前
toast完成签到,获得积分10
36秒前
39秒前
Jasper发布了新的文献求助10
39秒前
39秒前
40秒前
42秒前
现代啤酒发布了新的文献求助10
44秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136697
求助须知:如何正确求助?哪些是违规求助? 2787724
关于积分的说明 7782985
捐赠科研通 2443808
什么是DOI,文献DOI怎么找? 1299415
科研通“疑难数据库(出版商)”最低求助积分说明 625444
版权声明 600954