Interpretable hardness prediction of high-entropy alloys through ensemble learning

可解释性 集成学习 人工智能 集合预报 机器学习 计算机科学 材料科学 堆积 化学 有机化学
作者
Yifan Zhang,Wei Ren,Weili Wang,Nan Li,Yuxin Zhang,Xuemei Li,Wenhui Li
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:945: 169329-169329 被引量:31
标识
DOI:10.1016/j.jallcom.2023.169329
摘要

With the development of artificial intelligence, machine learning has a wide range of applications in the field of materials. The sparsity of data on the mechanical properties of high-entropy alloys makes it difficult to balance between the generalizability and interpretability in data-driven predictive models of material properties. A machine learning model was established based on the HEA hardness data of the Al-Co-Cr-Cu-Fe-Ni system, and several modeling features were screened out through a three-step parallel approach. Model ensemble was performed for RandomForest, XGBoost, LightGBM and CatBoost using the stacking ensemble algorithm, and the coefficient of determination(R2) of the model reached 0.93 after a ten-fold cross-validation. The ensemble learning is stable and accurate for predicting HEA hardness value, and is experimentally verified. The model and selected features can also be applied to different HEA systems as well as low hardness CrFeNi MEA. In addition, we further explained the large prediction deviation of MEA in the high hardness region. Further, the effects of HEA composition and phase formation on the hardness of HEA were qualitatively analyzed based on interpretable tools like SHAP values as well as PDP/ICE plots, respectively. Finally, the model not only has the generalization of ensemble learning, but also has certain interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
wasiwan完成签到,获得积分10
3秒前
科研通AI2S应助圣晟胜采纳,获得10
4秒前
4秒前
长清发布了新的文献求助30
4秒前
彭于晏应助Jian采纳,获得20
4秒前
朴蒲萤荧完成签到,获得积分10
5秒前
文静紫霜完成签到 ,获得积分10
6秒前
xiang完成签到 ,获得积分10
6秒前
背后雨柏完成签到 ,获得积分10
9秒前
9秒前
10秒前
seata完成签到,获得积分10
11秒前
SCINEXUS应助科研通管家采纳,获得50
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
勿明应助科研通管家采纳,获得30
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
CodeCraft应助科研通管家采纳,获得10
14秒前
SCINEXUS应助科研通管家采纳,获得20
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
SCINEXUS应助科研通管家采纳,获得20
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
胖胖猪完成签到,获得积分10
15秒前
18秒前
田様应助Cz采纳,获得10
18秒前
科研通AI2S应助宇文数学采纳,获得10
19秒前
酷波er应助清新的苑博采纳,获得10
21秒前
Cz完成签到,获得积分20
22秒前
传奇3应助圣晟胜采纳,获得10
22秒前
韩帅发布了新的文献求助10
23秒前
薛定谔的猫完成签到,获得积分10
23秒前
24秒前
清秀的SONG完成签到 ,获得积分10
25秒前
霍不言完成签到,获得积分10
25秒前
26秒前
诸笑白发布了新的文献求助10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849