Interpretable hardness prediction of high-entropy alloys through ensemble learning

可解释性 集成学习 人工智能 集合预报 机器学习 计算机科学 材料科学 堆积 化学 有机化学
作者
Yifan Zhang,Wei Ren,Weili Wang,Nan Li,Yuxin Zhang,Xuemei Li,Wenhui Li
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:945: 169329-169329 被引量:31
标识
DOI:10.1016/j.jallcom.2023.169329
摘要

With the development of artificial intelligence, machine learning has a wide range of applications in the field of materials. The sparsity of data on the mechanical properties of high-entropy alloys makes it difficult to balance between the generalizability and interpretability in data-driven predictive models of material properties. A machine learning model was established based on the HEA hardness data of the Al-Co-Cr-Cu-Fe-Ni system, and several modeling features were screened out through a three-step parallel approach. Model ensemble was performed for RandomForest, XGBoost, LightGBM and CatBoost using the stacking ensemble algorithm, and the coefficient of determination(R2) of the model reached 0.93 after a ten-fold cross-validation. The ensemble learning is stable and accurate for predicting HEA hardness value, and is experimentally verified. The model and selected features can also be applied to different HEA systems as well as low hardness CrFeNi MEA. In addition, we further explained the large prediction deviation of MEA in the high hardness region. Further, the effects of HEA composition and phase formation on the hardness of HEA were qualitatively analyzed based on interpretable tools like SHAP values as well as PDP/ICE plots, respectively. Finally, the model not only has the generalization of ensemble learning, but also has certain interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CZC完成签到,获得积分10
2秒前
张曰淼完成签到,获得积分10
3秒前
怡然的雪柳完成签到,获得积分10
3秒前
idemipere完成签到,获得积分10
4秒前
Jialing完成签到 ,获得积分10
4秒前
故意的静芙完成签到,获得积分20
4秒前
4秒前
5秒前
陈文文完成签到 ,获得积分10
5秒前
鳗鱼纸飞机完成签到,获得积分10
5秒前
铁铁完成签到,获得积分10
5秒前
情怀应助111采纳,获得10
6秒前
yana完成签到,获得积分10
6秒前
Umar完成签到,获得积分10
6秒前
传奇3应助YBOH采纳,获得10
7秒前
Sli完成签到,获得积分10
7秒前
7秒前
小马完成签到 ,获得积分10
7秒前
含蓄朝雪完成签到,获得积分10
9秒前
脑洞疼应助JING采纳,获得10
9秒前
wanli445完成签到,获得积分10
10秒前
10秒前
南海神尼完成签到,获得积分10
10秒前
11秒前
欢乐城完成签到,获得积分10
11秒前
11秒前
Clown发布了新的文献求助10
12秒前
GLORIA完成签到 ,获得积分10
12秒前
12秒前
芳芳子呀完成签到,获得积分10
12秒前
牛牛发布了新的文献求助10
13秒前
昨夜書发布了新的文献求助10
14秒前
111完成签到,获得积分10
14秒前
sx关闭了sx文献求助
14秒前
整齐芷文完成签到,获得积分10
15秒前
yellow完成签到,获得积分10
15秒前
小王完成签到 ,获得积分10
16秒前
jiying131发布了新的文献求助10
16秒前
luogan完成签到,获得积分10
16秒前
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650