Prediction of ideal strength by machine learning

理想(伦理) 可靠性(半导体) 理想溶液 计算机科学 材料科学 物理 哲学 热力学 功率(物理) 认识论
作者
Zhao Liu,Biao Wang
出处
期刊:Materials Chemistry and Physics [Elsevier]
卷期号:299: 127476-127476 被引量:8
标识
DOI:10.1016/j.matchemphys.2023.127476
摘要

Ideal strength is the highest stress a perfect material can withstand. In practice, a real material has a much lower strength than its ideal strength due to the existence of various defects. Knowing the ideal strength of a material is important because it can not only help to assess the gap remaining to the upper limit of the material's strength but also provides a reference for studying the fracture and deformation behavior. In this work, we developed a machine learning model to predict the ideal strength of materials. The mean R2 score of the 10-fold cross-validation for the model was estimated to be as high as 0.894, suggesting its high accuracy. In addition, a comparison between the machine learning predicted results with previously published DFT results also demonstrates the reliability. The feature importance analysis of the machine learning model unveils the mechanism that dominates the ideal strength of different materials. Based on the quantitative study between the ideal strength and the properties of the materials, novel empirical models were proposed to predict the ideal strength, i.e., the ideal strength can be quickly estimated to be 1/50 Tm or 3 ρ (density) in the unit of GPa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
呆萌白竹完成签到,获得积分10
3秒前
踏实的师完成签到,获得积分10
4秒前
4秒前
852应助哈喽酷狗采纳,获得10
5秒前
lwl发布了新的文献求助10
5秒前
猪蹄强盗发布了新的文献求助10
5秒前
11发布了新的文献求助10
5秒前
6秒前
桐桐应助可靠的寒风采纳,获得10
9秒前
10秒前
10秒前
MJN完成签到,获得积分10
11秒前
11秒前
猪蹄强盗完成签到,获得积分20
12秒前
13秒前
komorebi发布了新的文献求助10
14秒前
John完成签到 ,获得积分10
15秒前
16秒前
烟花应助小支绝不停笔采纳,获得10
17秒前
思婷老公发布了新的文献求助10
18秒前
22秒前
小二郎应助ured采纳,获得10
22秒前
勤劳尔丝发布了新的文献求助10
26秒前
Jasper应助科研通管家采纳,获得10
26秒前
shinysparrow应助科研通管家采纳,获得50
26秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
深情安青应助科研通管家采纳,获得10
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
26秒前
小鹿斑比完成签到 ,获得积分10
28秒前
28秒前
殷启维完成签到,获得积分10
29秒前
komorebi完成签到,获得积分10
29秒前
30秒前
刘刘刘完成签到 ,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774905
关于积分的说明 7724757
捐赠科研通 2430459
什么是DOI,文献DOI怎么找? 1291134
科研通“疑难数据库(出版商)”最低求助积分说明 622066
版权声明 600323