In-situ fabrication of a three-dimensional nanopalladium network into a biocathode enhances chloramphenicol degradation

生物膜 化学 电子转移 降级(电信) 微生物燃料电池 胞外聚合物 化学工程 细菌 核化学 电极 阳极 有机化学 生物 遗传学 电信 计算机科学 工程类 物理化学
作者
Leilei Xiao,Yanqing Sheng,Wenjing Wang,Qunqun Liu,Zhaoran Li
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:459: 141656-141656 被引量:4
标识
DOI:10.1016/j.cej.2023.141656
摘要

Bioelectrochemical systems (BESs) with biocathodes are a promising technology for antibiotic removal, but they are often limited by inefficient electron transfer from the cathode to bacteria due to the low conductivity of biofilms. In this study, a conductive cathodic biofilm was established through in-situ synthesis and immobilization of biogenic palladium nanoparticles (Pd-NPs) for chloramphenicol (CAP) removal. Compared to the control biocathode, the limiting current density of the Pd-fabricated biocathode (Pd-biocathode) was increased by 4.3 times, and the charge transfer resistance was decreased by 673 % due to enhanced extracellular electron transfer. The Pd-biocathode showed accelerated CAP removal, with the removal rate constant (k) increasing by 44 % compared to the control biocathode. In particular, the removal efficiency of the Pd-biocathode increased by 71 % within 4 h. These results might be explained by the decreased charge transfer resistance of the biocathode, the selective enrichment of functional bacteria and the up-expression of genes encoding organic substance metabolism and degrading enzyme activity. In addition, the increased applied voltage negligibly affected the enhancement of CAP removal in the Pd-biocathode BES, but it enhanced CAP removal in the control BES. Additionally, glucose addition markedly improved the CAP removal rates. This work demonstrates the potential of an effective and simple biocathode modification strategy through the in-situ synthesis of conductive NPs that could increase the antibiotic removal rates, but also provides new insight into how microbe-electrode interactions can be improved to enhance BES performance in wastewater treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哔哔鱼完成签到,获得积分10
刚刚
21完成签到,获得积分10
2秒前
泡芙不甜完成签到 ,获得积分10
2秒前
3秒前
DaisyChan完成签到 ,获得积分10
3秒前
阿切发布了新的文献求助10
3秒前
4秒前
赞zan完成签到,获得积分10
4秒前
彭彭完成签到,获得积分10
5秒前
5秒前
pure123完成签到 ,获得积分10
6秒前
sustwanli发布了新的文献求助10
6秒前
了该完成签到,获得积分10
7秒前
852应助江浪浪采纳,获得10
7秒前
8秒前
现代的雨竹完成签到,获得积分10
8秒前
苏小小发布了新的文献求助10
9秒前
阿切完成签到,获得积分20
11秒前
lily336699完成签到,获得积分10
11秒前
万能图书馆应助sustwanli采纳,获得10
11秒前
11秒前
烟花应助miku1采纳,获得10
12秒前
12秒前
科研副本发布了新的文献求助10
14秒前
含糊的代丝完成签到,获得积分10
14秒前
丘比特应助娜娜采纳,获得10
15秒前
小林完成签到,获得积分10
17秒前
liang19640908完成签到 ,获得积分10
17秒前
ding应助lumos采纳,获得10
17秒前
okko完成签到,获得积分10
18秒前
19秒前
跳跃尔琴发布了新的文献求助10
22秒前
24秒前
心灵美如豹完成签到 ,获得积分10
24秒前
26秒前
26秒前
27秒前
识南发布了新的文献求助10
29秒前
娜娜发布了新的文献求助10
30秒前
斯文败类应助张大猛采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134819
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773883
捐赠科研通 2441585
什么是DOI,文献DOI怎么找? 1298006
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825