Differential Equation-Informed Neural Networks for State-of-Charge Estimation

人工神经网络 计算机科学 微分方程 仿真 电池(电) 控制理论(社会学) 人工智能 数学 物理 数学分析 功率(物理) 控制(管理) 量子力学 经济 经济增长
作者
Lujuan Dang,J. S. Yang,Meiqin Liu,Badong Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:2
标识
DOI:10.1109/tim.2023.3334377
摘要

State-of-charge (SOC) estimation is crucial for improving the safety, reliability, and performance of the battery. Neural networks-based methods for battery SOC estimation have received extensive attention due to the flexibility and applicability. However, owing to complicated electrochemical dynamics and multiphysics coupling, a trivial, black-box emulation of batteries that senses only voltage, current, and surface temperature obviously cannot result in high-performance SOC estimation. To address this problem, this article proposes a class of differential equation-informed neural networks (DENNs) including differential equation-informed multilayer perception (DE-MLP), differential equation-informed recurrent neural network (DE-RNN), and differential equation-informed long short-term memory (DE-LSTM), to estimate battery SOC. In the proposed methods, the underlying physical laws in the form of the differential equation are embedded in the training of neural networks, such that the network parameters are updated toward optimal faster. We also implement an inverse problem in DENNs, which simultaneously estimates the unknown parameters of the differential equation and network parameters. In addition, the approximation theory and error analysis for DENNs are provided. The experiments in this article are performed in real datasets, and the results illustrate the effectiveness of the proposed methods under different working conditions. Compared with the traditional neural networks, the proposed DENNs achieve more stable and accurate SOC estimation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
思源应助wen采纳,获得10
1秒前
美丽猫咪发布了新的文献求助10
1秒前
2秒前
chhzz发布了新的文献求助10
2秒前
舒适念真发布了新的文献求助10
2秒前
萧水白应助shisH采纳,获得10
3秒前
3秒前
搜集达人应助聪慧芷巧采纳,获得30
3秒前
3秒前
禾苗完成签到 ,获得积分10
4秒前
feifei发布了新的文献求助10
5秒前
5秒前
汉堡包应助聪慧芷巧采纳,获得10
6秒前
Sid发布了新的文献求助10
6秒前
7秒前
斯文败类应助HP采纳,获得10
7秒前
luck发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
啊薇儿发布了新的文献求助10
8秒前
慕青应助聪慧芷巧采纳,获得10
8秒前
孙扬发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
美好向彤完成签到,获得积分10
9秒前
9秒前
10秒前
团子发布了新的文献求助20
11秒前
上官若男应助梦中有琦采纳,获得10
11秒前
uqfan完成签到,获得积分10
11秒前
12秒前
贪玩的幻姬完成签到 ,获得积分10
12秒前
FashionBoy应助聪慧芷巧采纳,获得10
12秒前
桐桐应助研友_Zbb4mZ采纳,获得10
12秒前
thginK9z发布了新的文献求助10
12秒前
linmo发布了新的文献求助10
12秒前
liyali发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950817
求助须知:如何正确求助?哪些是违规求助? 3496247
关于积分的说明 11080980
捐赠科研通 3226673
什么是DOI,文献DOI怎么找? 1783954
邀请新用户注册赠送积分活动 867992
科研通“疑难数据库(出版商)”最低求助积分说明 800993