Differential Equation-Informed Neural Networks for State-of-Charge Estimation

人工神经网络 计算机科学 微分方程 仿真 电池(电) 控制理论(社会学) 人工智能 数学 物理 经济增长 量子力学 数学分析 经济 功率(物理) 控制(管理)
作者
Lujuan Dang,J. S. Yang,Meiqin Liu,Badong Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:10
标识
DOI:10.1109/tim.2023.3334377
摘要

State-of-charge (SOC) estimation is crucial for improving the safety, reliability, and performance of the battery. Neural networks-based methods for battery SOC estimation have received extensive attention due to the flexibility and applicability. However, owing to complicated electrochemical dynamics and multiphysics coupling, a trivial, black-box emulation of batteries that senses only voltage, current, and surface temperature obviously cannot result in high-performance SOC estimation. To address this problem, this article proposes a class of differential equation-informed neural networks (DENNs) including differential equation-informed multilayer perception (DE-MLP), differential equation-informed recurrent neural network (DE-RNN), and differential equation-informed long short-term memory (DE-LSTM), to estimate battery SOC. In the proposed methods, the underlying physical laws in the form of the differential equation are embedded in the training of neural networks, such that the network parameters are updated toward optimal faster. We also implement an inverse problem in DENNs, which simultaneously estimates the unknown parameters of the differential equation and network parameters. In addition, the approximation theory and error analysis for DENNs are provided. The experiments in this article are performed in real datasets, and the results illustrate the effectiveness of the proposed methods under different working conditions. Compared with the traditional neural networks, the proposed DENNs achieve more stable and accurate SOC estimation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zuozuo完成签到,获得积分10
1秒前
1秒前
xx完成签到,获得积分10
1秒前
领导范儿应助沉静胜采纳,获得10
1秒前
1秒前
爆米花应助皇甫锾铬采纳,获得10
2秒前
汉堡包应助我www采纳,获得10
2秒前
木子完成签到,获得积分20
2秒前
ZZZ完成签到,获得积分20
2秒前
华仔应助方一斩采纳,获得10
2秒前
3秒前
大个应助抽坎填离采纳,获得10
3秒前
4秒前
4秒前
ding应助rose采纳,获得10
4秒前
4秒前
5秒前
6秒前
无问西东完成签到,获得积分20
6秒前
吕邓宏发布了新的文献求助10
6秒前
6秒前
权权xulu完成签到,获得积分10
7秒前
8秒前
8秒前
尊敬雨灵完成签到,获得积分10
8秒前
Leslie完成签到,获得积分10
9秒前
雷锋发布了新的文献求助10
9秒前
无花果应助流云采纳,获得10
9秒前
香蕉导师发布了新的文献求助10
9秒前
10秒前
tangying8642发布了新的文献求助10
10秒前
ZjieY完成签到,获得积分10
11秒前
云雾落清河关注了科研通微信公众号
11秒前
hjyylab完成签到,获得积分0
11秒前
SIC发布了新的文献求助10
12秒前
gong完成签到,获得积分10
12秒前
上官若男应助稳重以冬采纳,获得10
12秒前
13秒前
刘欣悦发布了新的文献求助10
13秒前
Gin_发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624763
求助须知:如何正确求助?哪些是违规求助? 4710606
关于积分的说明 14951556
捐赠科研通 4778691
什么是DOI,文献DOI怎么找? 2553391
邀请新用户注册赠送积分活动 1515355
关于科研通互助平台的介绍 1475679