Bioorthogonal chemistry mediated cell engineering for advanced cell and cell-derived vesicle therapies: Principles, progresses, and remaining challenges

生物正交化学 化学 纳米技术 细胞 点击化学 生物化学 组合化学 材料科学
作者
Chao Pan,Xiuxian Jiang,Chang Liu,Junchao Wei,Yang Wang,Canyu Yang,Yong Gan
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:480: 148120-148120 被引量:2
标识
DOI:10.1016/j.cej.2023.148120
摘要

In the past few decades, cell and cell-derived vesicle therapies have experienced rapid development and played an increasingly important role in treating diverse diseases. Surface engineering can outfit cells and cell-derived vesicles with extrinsic functions to enhance efficacy. Nevertheless, traditional genetic, chemical, and physical cell engineering methods have limitations such as low efficiency, lack of specificity, and safety concerns, leading to a growing preference for bioorthogonal approaches. In light of its high efficiency, selectivity, and biocompatibility, bioorthogonal chemistry has been extensively employed in developing targeted or multifunctional delivery systems through direct bioorthogonal conjugation with target sites as well as coupling with nanoparticles, biomolecules, and chemotherapeutic drugs. In this review, we first introduced basic principles of bioorthogonal chemistry, including the main labeling pathways and typical bioorthogonal reactions. Then, we shed light on the recent breakthroughs in exploiting bioorthogonal chemistry to decorate multiple cells (stem cells, immune cells, cancer cells, islet β cells, and bacteria) and cell-derived vesicles for elevated target or combination therapy. Finally, we provide insights into the current limitations and future prospects of bioorthogonal chemistry in biomedical applications. This summary provides a panoramic view of bioorthogonal chemistry in cell and cell-derived vesicle therapies and inspires researchers to explore further applications of bioorthogonal chemistry in new indications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo完成签到,获得积分20
刚刚
搜集达人应助Daisy采纳,获得10
刚刚
拜拜完成签到,获得积分10
刚刚
酷炫蛋挞完成签到 ,获得积分10
1秒前
1秒前
爆米花应助Fancy采纳,获得10
1秒前
2秒前
zhanglan发布了新的文献求助10
2秒前
Hello应助你好采纳,获得10
2秒前
2秒前
科研通AI5应助Selenge采纳,获得10
3秒前
长情半邪发布了新的文献求助10
3秒前
jackone发布了新的文献求助30
3秒前
4秒前
yangzhuang发布了新的文献求助10
4秒前
fantasy完成签到,获得积分20
5秒前
sss完成签到,获得积分10
5秒前
6秒前
莹崽无敌发布了新的文献求助10
6秒前
科研通AI5应助Ywffffff采纳,获得10
7秒前
充电宝应助陶宇采纳,获得10
7秒前
ding应助0318采纳,获得10
7秒前
柯梦完成签到,获得积分10
7秒前
7秒前
8秒前
贾西贝发布了新的文献求助10
8秒前
9秒前
afv发布了新的文献求助10
9秒前
卤化氢完成签到 ,获得积分10
9秒前
10秒前
鹅鹅完成签到 ,获得积分10
10秒前
FceEar完成签到,获得积分10
11秒前
小马甲应助阿坤采纳,获得10
11秒前
11秒前
11秒前
wanci应助胖虎啊采纳,获得10
11秒前
快乐小狗完成签到 ,获得积分10
12秒前
齐齐巴宾发布了新的文献求助10
12秒前
12秒前
CIAO完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546979
求助须知:如何正确求助?哪些是违规求助? 3123961
关于积分的说明 9357531
捐赠科研通 2822555
什么是DOI,文献DOI怎么找? 1551574
邀请新用户注册赠送积分活动 723561
科研通“疑难数据库(出版商)”最低求助积分说明 713801