Three-dimensional laminar flow using physics informed deep neural networks

层流 人工神经网络 物理 纳维-斯托克斯方程组 流量(数学) 偏微分方程 深度学习 压缩性 流体力学 边值问题 应用数学 微分方程 人工智能 计算机科学 机械 数学 量子力学
作者
Saykat Kumar Biswas,N. K. Anand
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (12) 被引量:9
标识
DOI:10.1063/5.0180834
摘要

Physics informed neural networks (PINNs) have demonstrated their effectiveness in solving partial differential equations (PDEs). By incorporating the governing equations and boundary conditions directly into the neural network architecture with the help of automatic differentiation, PINNs can approximate the solution of a system of PDEs with good accuracy. Here, an application of PINNs in solving three-dimensional (3D) Navier–Stokes equations for laminar, steady, and incompressible flow is presented. Notably, our approach involves deploying PINNs using feed-forward deep neural networks (DNNs) without depending on any simulation or experimental data. This investigation focuses on 3D square channel flow and 3D lid-driven cavity flow. For each case, one deep neural network was trained using only the governing equations and boundary conditions. Finally, the PINNs' results were compared with the computational fluid dynamics results. The goal was to assess the ability of PINNs (with DNN architectures) to predict the solution of Navier–Stokes equations in the 3D domain without any simulation or experimental data (unsupervised learning).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Jiangnj发布了新的文献求助30
1秒前
samantha完成签到,获得积分10
2秒前
2秒前
俎树同完成签到 ,获得积分10
2秒前
Natsu完成签到,获得积分10
2秒前
马保国123发布了新的文献求助10
3秒前
丘比特应助无限的隶采纳,获得10
3秒前
在云里爱与歌完成签到,获得积分10
4秒前
迟大猫应助研究生采纳,获得10
4秒前
可行完成签到,获得积分10
4秒前
4秒前
yuhui完成签到,获得积分10
4秒前
5秒前
pi发布了新的文献求助10
5秒前
5秒前
小蘑菇应助科研菜鸟采纳,获得10
6秒前
Owen应助晚风采纳,获得10
6秒前
小二郎应助Jiangnj采纳,获得10
6秒前
微信研友完成签到,获得积分10
6秒前
科研通AI5应助陈杰采纳,获得10
6秒前
7秒前
Jasper应助含糊采纳,获得10
7秒前
dfggg发布了新的文献求助10
7秒前
跑在颖发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
yatou5651发布了新的文献求助10
7秒前
8秒前
乐乐应助koi采纳,获得10
8秒前
asdfqwer发布了新的文献求助10
8秒前
8秒前
chemhub完成签到,获得积分10
8秒前
杜杜完成签到,获得积分10
9秒前
周小慧发布了新的文献求助10
9秒前
9秒前
自由寻菱完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762