Automatic fault diagnosis of rolling bearings under multiple working conditions based on unsupervised stack denoising autoencoder

自编码 人工智能 模式识别(心理学) 计算机科学 降噪 聚类分析 断层(地质) 特征提取 分类器(UML) 方位(导航) 数据挖掘 深度学习 地质学 地震学
作者
Lei Wang,Hang Rao,Zhengcheng Dong,Wenhui Zeng,Fan Xu,Li Jiang,Chao Zhou
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
被引量:4
标识
DOI:10.1177/14759217231221214
摘要

In practical engineering, data often lack labels, resulting in difficulty in fault diagnosis. Because stack-denoising autoencoders possess robust feature extraction capabilities and resistance to interference, an automatic and unsupervised bearing fault diagnosis method based on the stack-denoising autoencoder without an output layer was proposed in this study. As the stacked denoising autoencoder is an unsupervised algorithm, this approach can reduce reliance on manually labeled data labels. Therefore, this study proposed a new method for automatic fault diagnosis. First, the bearing fault features of the rolling bearing were extracted using the stack denoising autoencoder without an output layer. Meanwhile, the dimensions of the features were directly reduced to two or three dimensions by several hidden layers, thereby reducing manual experience. Second, the labels extracted from the clustering model were selected as inputs for different classifier models to automatically identify different types of faults. Two open-source rolling bearing datasets under various conditions were used to validate the classification performance of the proposed method. Finally, its effectiveness was verified using the experimental results. Various indicators were used to evaluate the performance of the proposed method, and the results showed an automatic bearing fault diagnosis accuracy of up to 90% when using different models and working conditions. Among the two datasets, the classification model achieved the highest accuracies of 0.99667 and 0.97143 and the lowest accuracies of 0.98000 and 0.90476, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang完成签到,获得积分10
刚刚
刚刚
儒雅惜海发布了新的文献求助10
刚刚
1秒前
乌克丽丽发布了新的文献求助10
1秒前
1秒前
卢西奥完成签到,获得积分10
1秒前
搜集达人应助轻舟采纳,获得20
3秒前
星辰大海应助满意的凌雪采纳,获得10
3秒前
科研通AI6应助健忘以旋采纳,获得10
3秒前
4秒前
bkagyin应助jc_HSC采纳,获得10
4秒前
yeguo发布了新的文献求助30
4秒前
森淼发布了新的文献求助10
4秒前
心语完成签到 ,获得积分10
5秒前
七海老祖完成签到,获得积分10
5秒前
5秒前
seven发布了新的文献求助10
5秒前
科研狗发布了新的文献求助10
6秒前
6秒前
读书人完成签到,获得积分10
7秒前
huzi完成签到,获得积分10
8秒前
8秒前
沐沐发布了新的文献求助10
8秒前
程志斌完成签到,获得积分20
9秒前
咩咩完成签到 ,获得积分10
10秒前
dabai完成签到,获得积分10
11秒前
霸气远锋完成签到,获得积分20
11秒前
科研通AI6应助称心嫣娆采纳,获得10
14秒前
yhxwqkk完成签到,获得积分10
14秒前
14秒前
Owen应助中科院王博采纳,获得10
14秒前
只争朝夕应助queer采纳,获得10
14秒前
高兴的金鑫完成签到 ,获得积分10
15秒前
玛卡巴卡完成签到 ,获得积分20
15秒前
零一完成签到,获得积分10
15秒前
16秒前
幸福的馒头完成签到,获得积分10
16秒前
17秒前
成就念芹完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577828
求助须知:如何正确求助?哪些是违规求助? 4662923
关于积分的说明 14743771
捐赠科研通 4603565
什么是DOI,文献DOI怎么找? 2526517
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465605