Machine learning (ML) for fluvial lithofacies identification from well logs: A hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability

人工神经网络 测井 混合模型 河流 一般化 登录中 地质学 模式识别(心理学) 反向传播 人工智能 计算机科学 数据挖掘 地球物理学 数学 地貌学 数学分析 生态学 构造盆地 生物
作者
Shiyi Jiang,Panke Sun,Fengqing Lyu,Sicheng Zhu,Ruifeng Zhou,Bin Li,Taihong He,Yujian Lin,Yining Gao,Wendan Song,Huaimin Xu
标识
DOI:10.1016/j.geoen.2023.212587
摘要

Identifying lithofacies plays a central role in studying sandbody architecture and reservoir quality in fluvial reservoirs. Logging data is widely considered the most effective method for identifying subsurface lithofacies. Many machine learning methods have been developed to automatically identify lithofacies by analyzing the value or patterns of well logs. However, poor generalization of many classification models has resulted from a lack of exploration into the intrinsic relationship between lithofacies characteristics, data distribution characteristics, and classification model applicability. To address this problem, we conducted research on core description, logging curve sampling processing for layer data, and lithofacies identification using gaussian mixture model (GMM) and back-propagation neural network (BPNN) for a tight sandstone reservoir in the northern part of the Sulige gas field. We investigated the relationship between lithofacies characteristics, logging data distribution, and the performances of machine learning classification models. Based on this relationship, we developed a gaussian mixture model-backpropagation neural network hybrid classification model (GMM-BPNN). The results indicate that the logging curve sampling method reduced deviation caused by adjacent lithofacies influence, and made the lithofacies characteristics constrain the distribution characteristics of logging data, thus improving the application of GMM and BPNN. We observe that the distribution of logging data becomes more centralized as the thickness of certain lithofacies increases, thus improving the performance of the GMM applicable to the classification of centrally distributed data. Conversely, the distribution of logging data becomes more discrete as the thickness of certain lithofacies decreases, thus improving the performance of BPNN applicable to the classification of discretely distributed data. Furthermore, the GMM-BPNN (with an F1-score of 0.95) outperformed individual GMM (F1-score of 0.76) and BPNN (F1-score of 0.77). The hybrid classification model also shows better outcomes in the identification of complex lithofacies in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小仙女完成签到 ,获得积分10
1秒前
三三完成签到 ,获得积分10
2秒前
浪迹青丘狐完成签到 ,获得积分10
4秒前
栗子完成签到 ,获得积分10
11秒前
杰帅完成签到,获得积分10
15秒前
ESC惠子子子子子完成签到 ,获得积分10
18秒前
合适的自行车完成签到 ,获得积分10
19秒前
愉快的傲之完成签到 ,获得积分10
25秒前
麦子完成签到 ,获得积分10
26秒前
干净傲霜完成签到 ,获得积分10
27秒前
加油少年完成签到,获得积分10
32秒前
jw完成签到,获得积分10
32秒前
感性的俊驰完成签到 ,获得积分10
32秒前
乐天生完成签到,获得积分10
34秒前
七爷完成签到 ,获得积分10
36秒前
jaytotti完成签到,获得积分10
38秒前
47秒前
herpes完成签到 ,获得积分0
50秒前
不秃燃的小老弟完成签到 ,获得积分10
50秒前
wushuimei完成签到 ,获得积分10
53秒前
sunwsmile完成签到 ,获得积分10
58秒前
manmanzhong完成签到 ,获得积分10
1分钟前
勤恳冰淇淋完成签到 ,获得积分10
1分钟前
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
害羞的雁易完成签到 ,获得积分10
1分钟前
1分钟前
叶y发布了新的文献求助10
1分钟前
悟空完成签到 ,获得积分10
1分钟前
曾经小伙完成签到 ,获得积分10
1分钟前
无花果应助xiu采纳,获得10
1分钟前
wuyyuan完成签到 ,获得积分10
1分钟前
大脸猫完成签到 ,获得积分10
1分钟前
专注的觅云完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
xiu完成签到,获得积分10
1分钟前
吴静完成签到 ,获得积分10
1分钟前
momo完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325418
求助须知:如何正确求助?哪些是违规求助? 4465883
关于积分的说明 13895000
捐赠科研通 4358174
什么是DOI,文献DOI怎么找? 2393938
邀请新用户注册赠送积分活动 1387356
关于科研通互助平台的介绍 1358111