亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning (ML) for fluvial lithofacies identification from well logs: A hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability

人工神经网络 测井 混合模型 河流 一般化 登录中 地质学 模式识别(心理学) 反向传播 人工智能 计算机科学 数据挖掘 地球物理学 数学 地貌学 数学分析 生态学 构造盆地 生物
作者
Shiyi Jiang,Panke Sun,Fengqing Lyu,Sicheng Zhu,Ruifeng Zhou,Bin Li,Taihong He,Yujian Lin,Yining Gao,Wendan Song,Huaimin Xu
标识
DOI:10.1016/j.geoen.2023.212587
摘要

Identifying lithofacies plays a central role in studying sandbody architecture and reservoir quality in fluvial reservoirs. Logging data is widely considered the most effective method for identifying subsurface lithofacies. Many machine learning methods have been developed to automatically identify lithofacies by analyzing the value or patterns of well logs. However, poor generalization of many classification models has resulted from a lack of exploration into the intrinsic relationship between lithofacies characteristics, data distribution characteristics, and classification model applicability. To address this problem, we conducted research on core description, logging curve sampling processing for layer data, and lithofacies identification using gaussian mixture model (GMM) and back-propagation neural network (BPNN) for a tight sandstone reservoir in the northern part of the Sulige gas field. We investigated the relationship between lithofacies characteristics, logging data distribution, and the performances of machine learning classification models. Based on this relationship, we developed a gaussian mixture model-backpropagation neural network hybrid classification model (GMM-BPNN). The results indicate that the logging curve sampling method reduced deviation caused by adjacent lithofacies influence, and made the lithofacies characteristics constrain the distribution characteristics of logging data, thus improving the application of GMM and BPNN. We observe that the distribution of logging data becomes more centralized as the thickness of certain lithofacies increases, thus improving the performance of the GMM applicable to the classification of centrally distributed data. Conversely, the distribution of logging data becomes more discrete as the thickness of certain lithofacies decreases, thus improving the performance of BPNN applicable to the classification of discretely distributed data. Furthermore, the GMM-BPNN (with an F1-score of 0.95) outperformed individual GMM (F1-score of 0.76) and BPNN (F1-score of 0.77). The hybrid classification model also shows better outcomes in the identification of complex lithofacies in other areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助lq采纳,获得10
1秒前
6秒前
落尘府完成签到 ,获得积分10
10秒前
ybf发布了新的文献求助10
10秒前
14秒前
Ww完成签到 ,获得积分10
19秒前
优美紫槐发布了新的文献求助10
20秒前
隐形曼青应助000采纳,获得10
21秒前
22秒前
小哈完成签到 ,获得积分10
24秒前
体贴花卷发布了新的文献求助10
27秒前
34秒前
镜花水月完成签到,获得积分10
35秒前
GFCL发布了新的文献求助10
40秒前
SciGPT应助菜菜采纳,获得10
40秒前
朱可欣完成签到,获得积分20
45秒前
rwq完成签到 ,获得积分10
47秒前
星辰大海应助体贴花卷采纳,获得10
49秒前
不与仙同完成签到 ,获得积分10
52秒前
GFCL完成签到,获得积分20
56秒前
朱可欣发布了新的文献求助30
57秒前
59秒前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
贝木泥舟完成签到,获得积分20
1分钟前
zhou完成签到,获得积分10
1分钟前
贝木泥舟发布了新的文献求助30
1分钟前
GFCL关注了科研通微信公众号
1分钟前
ramsey33完成签到 ,获得积分10
1分钟前
hehehe完成签到,获得积分10
1分钟前
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
lq发布了新的文献求助10
1分钟前
你好棒呀完成签到,获得积分10
1分钟前
Dirsch发布了新的文献求助30
1分钟前
www完成签到,获得积分20
1分钟前
1分钟前
www发布了新的文献求助10
2分钟前
Labor2025完成签到,获得积分20
2分钟前
Dirsch完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688315
关于积分的说明 14853255
捐赠科研通 4688366
什么是DOI,文献DOI怎么找? 2540526
邀请新用户注册赠送积分活动 1506981
关于科研通互助平台的介绍 1471523