Machine learning (ML) for fluvial lithofacies identification from well logs: A hybrid classification model integrating lithofacies characteristics, logging data distributions, and ML models applicability

人工神经网络 测井 混合模型 河流 一般化 登录中 地质学 模式识别(心理学) 反向传播 人工智能 计算机科学 数据挖掘 地球物理学 数学 地貌学 数学分析 生态学 构造盆地 生物
作者
Shiyi Jiang,Panke Sun,Fengqing Lyu,Sicheng Zhu,Ruifeng Zhou,Bin Li,Taihong He,Yujian Lin,Yining Gao,Wendan Song,Huaimin Xu
标识
DOI:10.1016/j.geoen.2023.212587
摘要

Identifying lithofacies plays a central role in studying sandbody architecture and reservoir quality in fluvial reservoirs. Logging data is widely considered the most effective method for identifying subsurface lithofacies. Many machine learning methods have been developed to automatically identify lithofacies by analyzing the value or patterns of well logs. However, poor generalization of many classification models has resulted from a lack of exploration into the intrinsic relationship between lithofacies characteristics, data distribution characteristics, and classification model applicability. To address this problem, we conducted research on core description, logging curve sampling processing for layer data, and lithofacies identification using gaussian mixture model (GMM) and back-propagation neural network (BPNN) for a tight sandstone reservoir in the northern part of the Sulige gas field. We investigated the relationship between lithofacies characteristics, logging data distribution, and the performances of machine learning classification models. Based on this relationship, we developed a gaussian mixture model-backpropagation neural network hybrid classification model (GMM-BPNN). The results indicate that the logging curve sampling method reduced deviation caused by adjacent lithofacies influence, and made the lithofacies characteristics constrain the distribution characteristics of logging data, thus improving the application of GMM and BPNN. We observe that the distribution of logging data becomes more centralized as the thickness of certain lithofacies increases, thus improving the performance of the GMM applicable to the classification of centrally distributed data. Conversely, the distribution of logging data becomes more discrete as the thickness of certain lithofacies decreases, thus improving the performance of BPNN applicable to the classification of discretely distributed data. Furthermore, the GMM-BPNN (with an F1-score of 0.95) outperformed individual GMM (F1-score of 0.76) and BPNN (F1-score of 0.77). The hybrid classification model also shows better outcomes in the identification of complex lithofacies in other areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助科研通管家采纳,获得30
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
诚心安露发布了新的文献求助10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
chenchenchen发布了新的文献求助10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
充电宝应助fgh采纳,获得10
1秒前
gensis应助科研通管家采纳,获得10
1秒前
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
17应助dream采纳,获得10
2秒前
bkagyin应助顺心的乐天采纳,获得10
3秒前
21发布了新的文献求助200
3秒前
Jmike完成签到,获得积分10
4秒前
zcy发布了新的文献求助10
5秒前
ning完成签到,获得积分10
5秒前
5秒前
6秒前
一一关注了科研通微信公众号
6秒前
暮霭沉沉应助lilililili采纳,获得10
7秒前
henibabababa完成签到,获得积分10
7秒前
杂货店的铺老板完成签到 ,获得积分10
8秒前
大海发布了新的文献求助10
9秒前
10秒前
小马甲应助星川采纳,获得10
11秒前
11秒前
我爱科研发布了新的文献求助10
12秒前
原野小年发布了新的文献求助10
14秒前
15秒前
ylc发布了新的文献求助20
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905