Data-driven and knowledge-guided denoising diffusion model for flood forecasting

计算机科学 离群值 数据挖掘 大洪水 扩散图 一般化 机器学习 领域(数学) 人工智能 初始化 数学 降维 纯数学 程序设计语言 非线性降维 哲学 数学分析 神学
作者
Pingping Shao,Jun Feng,Jiamin Lu,Pengcheng Zhang,Chenxin Zou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122908-122908 被引量:4
标识
DOI:10.1016/j.eswa.2023.122908
摘要

Data-driven models have been successfully applied in hydrological fields such as flood forecasting. However, limitations to the solutions to scientific problems still exist in this field: data collection is time-consuming and expensive, the quality of the collected data cannot be ensured, and noise or outliers may exist in the dataset, resulting in incorrect results. Moreover, data-driven models are trained only from available datasets and do not involve scientific principles or laws during the model-training process. This may lead to the prediction of specific scientific problems that do not conform to physical laws. Therefore, we propose a data-driven and knowledge-guided denoising diffusion (DK-Diffusion) model. First, for the data preprocessing stage, a coupled heterogeneous mapping tensor decomposition complementary algorithm is proposed that integrates the spatial information of a watershed, optimizes the initialization conditions of the model, reduces the potential correlation loss of data caused by tensor decomposition, and better optimizes the initial conditions of the model. We introduced an attention mechanism into the denoising diffusion probabilistic model (DDPM) to better capture medium- and long-term correlations during flood processes. Most importantly, under the guidance of flood physics theory, we designed the loss function of the proposed model to ensure that the output prediction results were more consistent with the laws of flood physics. This is an innovative improvement with greater practical engineering value because it optimizes the boundary conditions of the model, giving it better generalization ability and reducing its dependence on data. Through comparative experiments on datasets from the Qijiang and Tunxi basins in China, compared with the popular flood forecasting model AGCLSTM, the root mean square error (RMSE) was reduced by 20.3–27.7%, and the mean absolute percentage error (MAPE) was reduced by 4.2–4.3%. Compared with the conditional score-based diffusion models for probabilistic time series imputation (CSDI), the average RMSE and mean sum of continuous ranked probability score CRPSsum were reduced by 6.3–10.6% and 6.1–6.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
早发论文完成签到,获得积分10
1秒前
1秒前
QQ完成签到,获得积分10
2秒前
橙子完成签到 ,获得积分10
2秒前
2秒前
北极星完成签到 ,获得积分10
3秒前
4秒前
4秒前
公冶君浩发布了新的文献求助10
4秒前
4秒前
5秒前
Morri完成签到,获得积分10
5秒前
Lanyx发布了新的文献求助10
5秒前
树儿发布了新的文献求助30
5秒前
暴躁的问兰完成签到 ,获得积分10
5秒前
6秒前
李爽完成签到,获得积分10
6秒前
Akim应助好好学习采纳,获得10
6秒前
min20210429完成签到,获得积分10
7秒前
Gtpangda完成签到 ,获得积分10
7秒前
tanchihao完成签到,获得积分10
7秒前
陈无敌完成签到 ,获得积分10
7秒前
sunyuhao发布了新的文献求助10
8秒前
半枳黄括发布了新的文献求助10
8秒前
vica发布了新的文献求助10
8秒前
咎淇完成签到,获得积分10
10秒前
科目三应助西西采纳,获得10
11秒前
个性尔槐完成签到,获得积分10
11秒前
LIVE完成签到,获得积分10
11秒前
罗是一完成签到,获得积分10
12秒前
ziyueqin驳回了Akim应助
12秒前
宇是眼中星眸完成签到 ,获得积分10
13秒前
舒洛完成签到,获得积分10
14秒前
小居很哇塞完成签到,获得积分10
15秒前
ganchao1776完成签到,获得积分10
15秒前
狗子爱吃桃桃完成签到 ,获得积分10
15秒前
chase完成签到,获得积分10
16秒前
maidoudou完成签到,获得积分10
17秒前
英姑应助树儿采纳,获得10
17秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954