Data-driven and knowledge-guided denoising diffusion model for flood forecasting

计算机科学 离群值 数据挖掘 大洪水 扩散图 一般化 机器学习 领域(数学) 人工智能 初始化 数学 降维 纯数学 程序设计语言 非线性降维 哲学 数学分析 神学
作者
Pingping Shao,Jun Feng,Jiamin Lu,Pengcheng Zhang,Chenxin Zou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:244: 122908-122908 被引量:4
标识
DOI:10.1016/j.eswa.2023.122908
摘要

Data-driven models have been successfully applied in hydrological fields such as flood forecasting. However, limitations to the solutions to scientific problems still exist in this field: data collection is time-consuming and expensive, the quality of the collected data cannot be ensured, and noise or outliers may exist in the dataset, resulting in incorrect results. Moreover, data-driven models are trained only from available datasets and do not involve scientific principles or laws during the model-training process. This may lead to the prediction of specific scientific problems that do not conform to physical laws. Therefore, we propose a data-driven and knowledge-guided denoising diffusion (DK-Diffusion) model. First, for the data preprocessing stage, a coupled heterogeneous mapping tensor decomposition complementary algorithm is proposed that integrates the spatial information of a watershed, optimizes the initialization conditions of the model, reduces the potential correlation loss of data caused by tensor decomposition, and better optimizes the initial conditions of the model. We introduced an attention mechanism into the denoising diffusion probabilistic model (DDPM) to better capture medium- and long-term correlations during flood processes. Most importantly, under the guidance of flood physics theory, we designed the loss function of the proposed model to ensure that the output prediction results were more consistent with the laws of flood physics. This is an innovative improvement with greater practical engineering value because it optimizes the boundary conditions of the model, giving it better generalization ability and reducing its dependence on data. Through comparative experiments on datasets from the Qijiang and Tunxi basins in China, compared with the popular flood forecasting model AGCLSTM, the root mean square error (RMSE) was reduced by 20.3–27.7%, and the mean absolute percentage error (MAPE) was reduced by 4.2–4.3%. Compared with the conditional score-based diffusion models for probabilistic time series imputation (CSDI), the average RMSE and mean sum of continuous ranked probability score CRPSsum were reduced by 6.3–10.6% and 6.1–6.2%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wtg发布了新的文献求助10
刚刚
法一完成签到 ,获得积分10
刚刚
充电宝应助ysl采纳,获得30
1秒前
1秒前
诸葛语蝶完成签到,获得积分10
1秒前
通~发布了新的文献求助10
1秒前
xpp完成签到 ,获得积分10
2秒前
dyh6802发布了新的文献求助10
2秒前
2秒前
3秒前
短腿小柯基完成签到,获得积分10
3秒前
完美世界应助研一小刘采纳,获得10
3秒前
3秒前
水萝卜完成签到 ,获得积分10
4秒前
4秒前
高高完成签到,获得积分10
5秒前
甜甜晓露发布了新的文献求助10
5秒前
ChiDaiOLD发布了新的文献求助10
6秒前
7秒前
szl完成签到,获得积分10
7秒前
8秒前
orixero应助跳跃的静曼采纳,获得10
8秒前
诺奖离我十万八千里完成签到,获得积分10
8秒前
高高发布了新的文献求助10
8秒前
12秒前
深情安青应助机智的青槐采纳,获得10
12秒前
茶茶发布了新的文献求助10
12秒前
szl发布了新的文献求助10
12秒前
Lucas应助京阿尼采纳,获得10
13秒前
甜甜晓露完成签到,获得积分10
14秒前
科研通AI5应助qifa采纳,获得10
14秒前
shrike完成签到 ,获得积分10
14秒前
有魅力白开水完成签到,获得积分20
14秒前
小蒲完成签到 ,获得积分10
15秒前
万能图书馆应助大力鱼采纳,获得10
15秒前
16秒前
Rrr发布了新的文献求助10
17秒前
跳跃的静曼完成签到,获得积分10
17秒前
丰富的不惜完成签到,获得积分10
18秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808