清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Expected-mean gamma-incremental reinforcement learning algorithm for robot path planning

强化学习 计算机科学 运动规划 人工智能 路径(计算) 机器人 算法 机器人学习 机器学习 数学优化 移动机器人 数学 程序设计语言
作者
Chee Sheng Tan,Rosmiwati Mohd‐Mokhtar,Mohd Rizal Arshad
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123539-123539 被引量:7
标识
DOI:10.1016/j.eswa.2024.123539
摘要

Recently, researchers have been extensively exploring the immense potential of Q-Star. However, the available resources lack comprehensive information on this topic. Despite this, a Q-table, an uncomplicated lookup table containing actions and states, is often seen as a mere data structure for tracking. This overlooks the vast amount of knowledge that can be derived from it through visualization. The Q-learning algorithm utilizes this table to update values and determine the highest anticipated rewards for actions in each state. However, instead of relying solely on complex reward functions for algorithm development, leveraging the existing knowledge within the Q-table would be highly beneficial. Incorporating this valuable information into the algorithmic framework can minimize the need to develop intricate reward functions. This paper proposes an expected-mean gamma-incremental Q approach to tackle the challenges of convergence speed in an uninformed search reinforcement learning (RL) algorithm and the issue of path optimality in path planning problems. The gamma-incremental RL method revolves around adjusting the weight of the future value by considering the level of exploration. It enables the robot to receive preference feedback, either near-term reward or long-term reward, based on the frequency of the visited state. Meanwhile, the expected-mean technique uses the information of the robot's turning actions to update the Q-target. By consistently incorporating valuable insights from the Q-table, the algorithm can gradually enhance its understanding of the available information, resulting in more efficient decision-making. The experiment results indicate that the proposed algorithm accelerates the convergence rate, outperforming the baseline Q-learning by up to 2 times. It addresses the challenge of robot path planning by prioritizing promising solutions, resulting in near-optimal outcomes with higher total rewards and enhanced learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Panther完成签到,获得积分10
10秒前
黙宇循光完成签到 ,获得积分10
12秒前
卡卡罗特先森完成签到 ,获得积分10
13秒前
邓代容完成签到 ,获得积分10
44秒前
45秒前
科研通AI6应助fishway采纳,获得10
46秒前
1分钟前
1分钟前
万能图书馆应助fishway采纳,获得10
1分钟前
挣钱抱男模完成签到,获得积分10
1分钟前
1分钟前
南桥发布了新的文献求助10
1分钟前
Una完成签到,获得积分10
1分钟前
1分钟前
uppercrusteve完成签到,获得积分10
1分钟前
希望天下0贩的0应助饺子采纳,获得10
1分钟前
研友_VZG7GZ应助南桥采纳,获得10
1分钟前
2分钟前
饺子发布了新的文献求助10
2分钟前
Akim应助fishway采纳,获得10
2分钟前
小西完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
饺子完成签到,获得积分10
2分钟前
斯文的傲珊完成签到,获得积分10
2分钟前
一个小胖子完成签到,获得积分10
2分钟前
SciGPT应助bji采纳,获得10
2分钟前
咯咯咯完成签到 ,获得积分10
2分钟前
浮游应助fishway采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
fishway发布了新的文献求助10
3分钟前
wood完成签到,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
3分钟前
bji发布了新的文献求助10
3分钟前
大个应助fishway采纳,获得10
4分钟前
一路有你完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418494
求助须知:如何正确求助?哪些是违规求助? 4534207
关于积分的说明 14143270
捐赠科研通 4450428
什么是DOI,文献DOI怎么找? 2441241
邀请新用户注册赠送积分活动 1432967
关于科研通互助平台的介绍 1410352