Expected-mean gamma-incremental reinforcement learning algorithm for robot path planning

强化学习 计算机科学 运动规划 人工智能 路径(计算) 机器人 算法 机器人学习 机器学习 数学优化 移动机器人 数学 程序设计语言
作者
Chee Sheng Tan,Rosmiwati Mohd‐Mokhtar,Mohd Rizal Arshad
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123539-123539 被引量:7
标识
DOI:10.1016/j.eswa.2024.123539
摘要

Recently, researchers have been extensively exploring the immense potential of Q-Star. However, the available resources lack comprehensive information on this topic. Despite this, a Q-table, an uncomplicated lookup table containing actions and states, is often seen as a mere data structure for tracking. This overlooks the vast amount of knowledge that can be derived from it through visualization. The Q-learning algorithm utilizes this table to update values and determine the highest anticipated rewards for actions in each state. However, instead of relying solely on complex reward functions for algorithm development, leveraging the existing knowledge within the Q-table would be highly beneficial. Incorporating this valuable information into the algorithmic framework can minimize the need to develop intricate reward functions. This paper proposes an expected-mean gamma-incremental Q approach to tackle the challenges of convergence speed in an uninformed search reinforcement learning (RL) algorithm and the issue of path optimality in path planning problems. The gamma-incremental RL method revolves around adjusting the weight of the future value by considering the level of exploration. It enables the robot to receive preference feedback, either near-term reward or long-term reward, based on the frequency of the visited state. Meanwhile, the expected-mean technique uses the information of the robot's turning actions to update the Q-target. By consistently incorporating valuable insights from the Q-table, the algorithm can gradually enhance its understanding of the available information, resulting in more efficient decision-making. The experiment results indicate that the proposed algorithm accelerates the convergence rate, outperforming the baseline Q-learning by up to 2 times. It addresses the challenge of robot path planning by prioritizing promising solutions, resulting in near-optimal outcomes with higher total rewards and enhanced learning stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
刚刚
2秒前
lan发布了新的文献求助10
5秒前
聪明的二休完成签到,获得积分10
7秒前
易水完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
allzzwell完成签到 ,获得积分10
12秒前
方圆完成签到 ,获得积分10
12秒前
Dsunflower完成签到 ,获得积分10
12秒前
英俊的铭应助忧伤的怜晴采纳,获得10
13秒前
量子星尘发布了新的文献求助10
14秒前
kyt_vip完成签到,获得积分10
15秒前
Bismarck完成签到,获得积分10
18秒前
basil完成签到,获得积分10
19秒前
nkr完成签到,获得积分10
20秒前
叶子完成签到 ,获得积分10
20秒前
小张完成签到 ,获得积分10
22秒前
28秒前
胖胖完成签到 ,获得积分0
29秒前
量子星尘发布了新的文献求助10
30秒前
烈阳初现发布了新的文献求助10
32秒前
尔信完成签到 ,获得积分10
32秒前
LXZ完成签到,获得积分10
33秒前
黄启烽完成签到,获得积分10
33秒前
瓦罐完成签到 ,获得积分10
36秒前
Perrylin718完成签到,获得积分10
37秒前
笨笨青筠完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
Bioflying完成签到,获得积分10
42秒前
阿达完成签到 ,获得积分10
42秒前
urologywang完成签到 ,获得积分10
43秒前
好好应助科研通管家采纳,获得10
46秒前
好好应助科研通管家采纳,获得10
46秒前
慕青应助科研通管家采纳,获得10
46秒前
科研通AI6应助科研通管家采纳,获得10
46秒前
卑微学术人完成签到 ,获得积分10
48秒前
49秒前
111111完成签到,获得积分10
50秒前
烈阳初现完成签到,获得积分10
50秒前
笑林完成签到 ,获得积分10
50秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869297
关于积分的说明 15108591
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536417
关于科研通互助平台的介绍 1494839