清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Expected-mean gamma-incremental reinforcement learning algorithm for robot path planning

强化学习 计算机科学 运动规划 人工智能 路径(计算) 机器人 算法 机器人学习 机器学习 数学优化 移动机器人 数学 程序设计语言
作者
Chee Sheng Tan,Rosmiwati Mohd‐Mokhtar,Mohd Rizal Arshad
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123539-123539 被引量:7
标识
DOI:10.1016/j.eswa.2024.123539
摘要

Recently, researchers have been extensively exploring the immense potential of Q-Star. However, the available resources lack comprehensive information on this topic. Despite this, a Q-table, an uncomplicated lookup table containing actions and states, is often seen as a mere data structure for tracking. This overlooks the vast amount of knowledge that can be derived from it through visualization. The Q-learning algorithm utilizes this table to update values and determine the highest anticipated rewards for actions in each state. However, instead of relying solely on complex reward functions for algorithm development, leveraging the existing knowledge within the Q-table would be highly beneficial. Incorporating this valuable information into the algorithmic framework can minimize the need to develop intricate reward functions. This paper proposes an expected-mean gamma-incremental Q approach to tackle the challenges of convergence speed in an uninformed search reinforcement learning (RL) algorithm and the issue of path optimality in path planning problems. The gamma-incremental RL method revolves around adjusting the weight of the future value by considering the level of exploration. It enables the robot to receive preference feedback, either near-term reward or long-term reward, based on the frequency of the visited state. Meanwhile, the expected-mean technique uses the information of the robot's turning actions to update the Q-target. By consistently incorporating valuable insights from the Q-table, the algorithm can gradually enhance its understanding of the available information, resulting in more efficient decision-making. The experiment results indicate that the proposed algorithm accelerates the convergence rate, outperforming the baseline Q-learning by up to 2 times. It addresses the challenge of robot path planning by prioritizing promising solutions, resulting in near-optimal outcomes with higher total rewards and enhanced learning stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
4秒前
杨秋艳完成签到,获得积分10
5秒前
久久完成签到 ,获得积分10
10秒前
bo完成签到 ,获得积分10
12秒前
14秒前
huiluowork完成签到 ,获得积分10
38秒前
42秒前
herpes完成签到 ,获得积分0
46秒前
游01完成签到 ,获得积分0
52秒前
咖啡完成签到 ,获得积分10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
suki完成签到 ,获得积分10
1分钟前
顾矜应助ceeray23采纳,获得20
1分钟前
kmzzy完成签到,获得积分10
1分钟前
完美世界应助ceeray23采纳,获得20
1分钟前
nano完成签到 ,获得积分10
1分钟前
ybwei2008_163完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
Arctic完成签到 ,获得积分10
2分钟前
han完成签到 ,获得积分10
2分钟前
药药55完成签到,获得积分10
2分钟前
活泼的傲薇完成签到,获得积分10
2分钟前
victory_liu完成签到,获得积分10
2分钟前
zj完成签到 ,获得积分10
3分钟前
孟寐以求完成签到 ,获得积分10
3分钟前
AiQi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
枯叶蝶完成签到 ,获得积分10
3分钟前
研友_LN25rL完成签到,获得积分10
3分钟前
Owen应助热情的人杰采纳,获得10
3分钟前
Gary完成签到 ,获得积分10
3分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
3分钟前
XX2完成签到,获得积分10
3分钟前
2903827997完成签到,获得积分10
3分钟前
糕糕完成签到 ,获得积分10
4分钟前
默默完成签到 ,获得积分10
4分钟前
LL完成签到,获得积分10
4分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614846
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551