Expected-mean gamma-incremental reinforcement learning algorithm for robot path planning

强化学习 计算机科学 运动规划 人工智能 路径(计算) 机器人 算法 机器人学习 机器学习 数学优化 移动机器人 数学 程序设计语言
作者
Chee Sheng Tan,Rosmiwati Mohd‐Mokhtar,Mohd Rizal Arshad
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123539-123539 被引量:2
标识
DOI:10.1016/j.eswa.2024.123539
摘要

Recently, researchers have been extensively exploring the immense potential of Q-Star. However, the available resources lack comprehensive information on this topic. Despite this, a Q-table, an uncomplicated lookup table containing actions and states, is often seen as a mere data structure for tracking. This overlooks the vast amount of knowledge that can be derived from it through visualization. The Q-learning algorithm utilizes this table to update values and determine the highest anticipated rewards for actions in each state. However, instead of relying solely on complex reward functions for algorithm development, leveraging the existing knowledge within the Q-table would be highly beneficial. Incorporating this valuable information into the algorithmic framework can minimize the need to develop intricate reward functions. This paper proposes an expected-mean gamma-incremental Q approach to tackle the challenges of convergence speed in an uninformed search reinforcement learning (RL) algorithm and the issue of path optimality in path planning problems. The gamma-incremental RL method revolves around adjusting the weight of the future value by considering the level of exploration. It enables the robot to receive preference feedback, either near-term reward or long-term reward, based on the frequency of the visited state. Meanwhile, the expected-mean technique uses the information of the robot's turning actions to update the Q-target. By consistently incorporating valuable insights from the Q-table, the algorithm can gradually enhance its understanding of the available information, resulting in more efficient decision-making. The experiment results indicate that the proposed algorithm accelerates the convergence rate, outperforming the baseline Q-learning by up to 2 times. It addresses the challenge of robot path planning by prioritizing promising solutions, resulting in near-optimal outcomes with higher total rewards and enhanced learning stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lele7458完成签到,获得积分20
刚刚
热情大雁发布了新的文献求助10
刚刚
刚刚
鲤鱼小蕾发布了新的文献求助10
刚刚
2秒前
今后应助一丁雨采纳,获得10
2秒前
SciGPT应助zhangling采纳,获得10
3秒前
3秒前
3秒前
4秒前
香蕉觅云应助ylc采纳,获得10
4秒前
5秒前
yanna应助lunar采纳,获得10
5秒前
Lucas应助nan采纳,获得10
5秒前
yyy完成签到,获得积分10
6秒前
7秒前
ZXL发布了新的文献求助10
9秒前
听蝉完成签到,获得积分10
9秒前
Wee完成签到 ,获得积分10
10秒前
轻松沛凝发布了新的文献求助10
10秒前
LIVE发布了新的文献求助200
10秒前
11秒前
93发布了新的文献求助30
12秒前
可爱的函函应助soong采纳,获得10
12秒前
酷炫翠桃应助奋斗的妙海采纳,获得10
12秒前
西红柿炒番茄应助一丁雨采纳,获得10
13秒前
严永桂发布了新的文献求助10
13秒前
14秒前
Yi发布了新的文献求助30
15秒前
15秒前
所所应助吱吱采纳,获得30
18秒前
无花果应助ZXL采纳,获得10
18秒前
初见发布了新的文献求助10
19秒前
19秒前
20秒前
希望天下0贩的0应助Randy采纳,获得10
21秒前
领导范儿应助妥妥酱采纳,获得10
21秒前
jessica发布了新的文献求助50
21秒前
钮枫完成签到,获得积分10
21秒前
22秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160777
求助须知:如何正确求助?哪些是违规求助? 2811863
关于积分的说明 7893780
捐赠科研通 2470702
什么是DOI,文献DOI怎么找? 1315762
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053