Classification of depression tendency from gaze patterns during sentence reading

凝视 判决 阅读(过程) 萧条(经济学) 计算机科学 认知心理学 心理学 自然语言处理 人工智能 语言学 哲学 经济 宏观经济学
作者
Oren Kobo,Aya Meltzer‐Asscher,Jonathan Berant,Tom Schönberg
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:93: 106015-106015
标识
DOI:10.1016/j.bspc.2024.106015
摘要

Depression is a common and disabling mental health disorder, which impacts hundreds of millions of people worldwide. Current diagnosis methods rely almost solely on self-report and are prone to subjectivity and biases. In recent years, computational psychiatry has employed advanced sensing technology, utilizing rich data, to train accurate algorithms to detect depression from passive, non-invasive physiological markers. Gaze-tracking is used to collect cognitive data with high temporal resolution and offers a surrogate to underlying processes such as attention distribution, making it particularly useful for classification of attention-related cognitive abnormalities, including depression. We used data from gaze-tracking while participants were engaged in sentence reading to build a classifier for depression tendency. We created sentences constructed to highlight expected attention biases in depression. We recorded gaze data during reading from a sample of 101 participants and analyzed the data as a raw time-series. We used the validated PHQ-9 questionnaire to obtain depression levels per participant. Using LSTMs (Long Short-Term Memory Artificial Neural Network) and Random Forest analysis techniques we were able to reach above chance classification (60+%) of depression tendency levels from the gaze patterns. Limitations: A replication with more participants is needed. Data was collected among undergraduate students and was conducted only in Hebrew. Individual assessment was not validated against clinical data. The results can lead to potential data-driven and accessible diagnosis tools that will support and monitor depression treatment and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助ograss采纳,获得10
1秒前
小飞龙完成签到,获得积分10
1秒前
liwenwen发布了新的文献求助10
1秒前
李爱国应助jing采纳,获得10
1秒前
赘婿应助欧阳正义采纳,获得10
1秒前
米修完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
张鑫发布了新的文献求助10
3秒前
乐乐应助小花生采纳,获得10
4秒前
yx_cheng应助大侦探皮卡丘采纳,获得10
5秒前
6秒前
小鱼完成签到 ,获得积分10
6秒前
7秒前
7秒前
www发布了新的文献求助10
8秒前
9秒前
小丹完成签到 ,获得积分10
10秒前
huichuanyin完成签到 ,获得积分10
11秒前
like发布了新的文献求助10
11秒前
yaolei完成签到,获得积分10
11秒前
桐桐应助热心小松鼠采纳,获得10
12秒前
华仔应助热心小松鼠采纳,获得10
12秒前
Akim应助热心小松鼠采纳,获得10
12秒前
小二郎应助热心小松鼠采纳,获得10
12秒前
orixero应助热心小松鼠采纳,获得10
12秒前
12秒前
搜集达人应助热心小松鼠采纳,获得10
12秒前
12秒前
dd发布了新的文献求助10
12秒前
英姑应助热心小松鼠采纳,获得10
12秒前
NexusExplorer应助热心小松鼠采纳,获得10
12秒前
傻妞发布了新的文献求助10
14秒前
汉堡包应助sunshine采纳,获得10
14秒前
15秒前
ograss完成签到,获得积分10
16秒前
希望天下0贩的0应助倒影采纳,获得10
17秒前
大模型应助josy采纳,获得10
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966726
求助须知:如何正确求助?哪些是违规求助? 3512179
关于积分的说明 11162302
捐赠科研通 3247077
什么是DOI,文献DOI怎么找? 1793689
邀请新用户注册赠送积分活动 874549
科研通“疑难数据库(出版商)”最低求助积分说明 804429