Classification of depression tendency from gaze patterns during sentence reading

凝视 判决 阅读(过程) 萧条(经济学) 计算机科学 认知心理学 心理学 自然语言处理 人工智能 语言学 哲学 宏观经济学 经济
作者
Oren Kobo,Aya Meltzer‐Asscher,Jonathan Berant,Tom Schönberg
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106015-106015
标识
DOI:10.1016/j.bspc.2024.106015
摘要

Depression is a common and disabling mental health disorder, which impacts hundreds of millions of people worldwide. Current diagnosis methods rely almost solely on self-report and are prone to subjectivity and biases. In recent years, computational psychiatry has employed advanced sensing technology, utilizing rich data, to train accurate algorithms to detect depression from passive, non-invasive physiological markers. Gaze-tracking is used to collect cognitive data with high temporal resolution and offers a surrogate to underlying processes such as attention distribution, making it particularly useful for classification of attention-related cognitive abnormalities, including depression. We used data from gaze-tracking while participants were engaged in sentence reading to build a classifier for depression tendency. We created sentences constructed to highlight expected attention biases in depression. We recorded gaze data during reading from a sample of 101 participants and analyzed the data as a raw time-series. We used the validated PHQ-9 questionnaire to obtain depression levels per participant. Using LSTMs (Long Short-Term Memory Artificial Neural Network) and Random Forest analysis techniques we were able to reach above chance classification (60+%) of depression tendency levels from the gaze patterns. Limitations: A replication with more participants is needed. Data was collected among undergraduate students and was conducted only in Hebrew. Individual assessment was not validated against clinical data. The results can lead to potential data-driven and accessible diagnosis tools that will support and monitor depression treatment and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月流年完成签到,获得积分10
刚刚
刚刚
1秒前
8个老登发布了新的文献求助10
2秒前
douzi完成签到,获得积分10
2秒前
Li完成签到,获得积分10
2秒前
Macaco完成签到,获得积分10
3秒前
研友_8Yo3dn完成签到,获得积分10
3秒前
lilac完成签到,获得积分10
3秒前
misalia发布了新的文献求助10
3秒前
judy发布了新的文献求助10
3秒前
4秒前
李健的小迷弟应助称心铭采纳,获得30
4秒前
4秒前
adfadf发布了新的文献求助10
4秒前
CC完成签到,获得积分10
4秒前
1234567890完成签到,获得积分10
4秒前
彩色夏波发布了新的文献求助10
5秒前
劲秉应助跳舞的俏皮采纳,获得20
5秒前
5秒前
wy.he完成签到,获得积分0
6秒前
小林太郎应助小磊采纳,获得20
6秒前
QinMengyao完成签到,获得积分10
6秒前
hhh完成签到,获得积分10
7秒前
朴素的不乐完成签到 ,获得积分10
7秒前
旺旺应助刻苦若冰采纳,获得10
7秒前
Accept应助song24517采纳,获得20
8秒前
CC发布了新的文献求助10
8秒前
从容的海云完成签到,获得积分20
8秒前
8秒前
脑洞疼应助小张采纳,获得10
8秒前
爆米花应助gaos采纳,获得10
9秒前
虚安发布了新的文献求助10
10秒前
1234567890发布了新的文献求助10
10秒前
阔达萧发布了新的文献求助10
10秒前
10秒前
RRRIGO完成签到,获得积分10
11秒前
11秒前
嘻嘻完成签到,获得积分10
11秒前
皓月千里发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678