Classification of depression tendency from gaze patterns during sentence reading

凝视 判决 阅读(过程) 萧条(经济学) 计算机科学 认知心理学 心理学 自然语言处理 人工智能 语言学 哲学 经济 宏观经济学
作者
Oren Kobo,Aya Meltzer‐Asscher,Jonathan Berant,Tom Schönberg
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:93: 106015-106015
标识
DOI:10.1016/j.bspc.2024.106015
摘要

Depression is a common and disabling mental health disorder, which impacts hundreds of millions of people worldwide. Current diagnosis methods rely almost solely on self-report and are prone to subjectivity and biases. In recent years, computational psychiatry has employed advanced sensing technology, utilizing rich data, to train accurate algorithms to detect depression from passive, non-invasive physiological markers. Gaze-tracking is used to collect cognitive data with high temporal resolution and offers a surrogate to underlying processes such as attention distribution, making it particularly useful for classification of attention-related cognitive abnormalities, including depression. We used data from gaze-tracking while participants were engaged in sentence reading to build a classifier for depression tendency. We created sentences constructed to highlight expected attention biases in depression. We recorded gaze data during reading from a sample of 101 participants and analyzed the data as a raw time-series. We used the validated PHQ-9 questionnaire to obtain depression levels per participant. Using LSTMs (Long Short-Term Memory Artificial Neural Network) and Random Forest analysis techniques we were able to reach above chance classification (60+%) of depression tendency levels from the gaze patterns. Limitations: A replication with more participants is needed. Data was collected among undergraduate students and was conducted only in Hebrew. Individual assessment was not validated against clinical data. The results can lead to potential data-driven and accessible diagnosis tools that will support and monitor depression treatment and rehabilitation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
满意听白完成签到 ,获得积分10
1秒前
Lucas应助苹果采纳,获得10
1秒前
tianji发布了新的文献求助10
1秒前
dcc完成签到,获得积分10
1秒前
子寒完成签到,获得积分10
2秒前
Coldpal完成签到,获得积分10
2秒前
2秒前
Suzzne完成签到,获得积分10
3秒前
xjwang完成签到,获得积分10
3秒前
香蕉觅云应助盼盼527采纳,获得10
3秒前
盒子先生发布了新的文献求助10
4秒前
简单千秋发布了新的文献求助10
5秒前
无限的山水完成签到,获得积分10
6秒前
科研小白完成签到,获得积分10
7秒前
c_123完成签到 ,获得积分10
7秒前
汤锐完成签到,获得积分10
8秒前
大个应助Sky我的小清新采纳,获得10
8秒前
tinatian270完成签到,获得积分10
9秒前
秦磊完成签到,获得积分10
10秒前
轻松思枫完成签到 ,获得积分10
10秒前
tianji完成签到,获得积分10
11秒前
11秒前
糖果呖咕呖咕完成签到,获得积分10
11秒前
周涛完成签到,获得积分10
11秒前
xdf发布了新的文献求助10
12秒前
20240901完成签到,获得积分10
12秒前
柑橘完成签到,获得积分10
13秒前
kiska完成签到,获得积分10
13秒前
老德完成签到,获得积分10
13秒前
13秒前
chenhd完成签到,获得积分10
13秒前
ding应助bingbing采纳,获得10
14秒前
14秒前
蒸馏水完成签到,获得积分10
15秒前
RHR发布了新的文献求助10
17秒前
貔貅完成签到,获得积分10
17秒前
不辣的完成签到 ,获得积分10
17秒前
黄沙发布了新的文献求助10
17秒前
科研通AI2S应助宇儿采纳,获得10
18秒前
红红火火恍恍惚惚完成签到,获得积分10
18秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954